Author 
Message 
TAGS:

Hide Tags

Intern
Joined: 02 Oct 2009
Posts: 16

If x represents the sum of all the positive threedigit [#permalink]
Show Tags
13 Nov 2009, 20:35
5
This post received KUDOS
29
This post was BOOKMARKED
Question Stats:
46% (02:00) correct
54% (01:59) wrong based on 1025 sessions
HideShow timer Statistics
If x represents the sum of all the positive threedigit numbers that can be constructed using each of the distinct nonzero digits a, b, and c exactly once, what is the largest integer by which x must be divisible? (A) 3 (B) 6 (C) 11 (D) 22 (E) 222
Official Answer and Stats are available only to registered users. Register/ Login.
Last edited by Bunuel on 30 Jul 2012, 04:29, edited 2 times in total.
Added the OA



Manager
Joined: 05 Jun 2009
Posts: 77

Re: this is what it has come down to [#permalink]
Show Tags
13 Nov 2009, 20:40
where did this question come from wow I have like no idea where to begin I would assume 123 and 987 which are two combinations are both both divisible by 3 as the GCD so 3? A?



Math Expert
Joined: 02 Sep 2009
Posts: 39719

Re: this is what it has come down to [#permalink]
Show Tags
13 Nov 2009, 21:34
34
This post received KUDOS
Expert's post
19
This post was BOOKMARKED
rvthryet wrote: If x represents the sum of all the positive threedigit numbers that can be constructed using each of the distinct nonzero digits a, b, and c exactly once, what is the largest integer by which x must be divisible? (A) 3 (B) 6 (C) 11 (D) 22 (E) 222 I have never really understood the thinking behind this... Using THREE nonzero digits a,b,c only, we can construct 3!=6 numbers: abc, acb, bac, bca, cab, cba. Their sum will be: \(x=(100a+10b+c)+(100a+10c+b)+(100b+10a+c)+(100b+10c+a)+(100c+10a+b)+(100c+10b+a)=\) \(=200*(a+b+c)+20*(a+b+c)+2*(a+b+c)=\) \(=222*(a+b+c)\) Largest integer by which x MUST be divisible is \(222\). Answer: E (222).
_________________
New to the Math Forum? Please read this: All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Manager
Joined: 11 Sep 2009
Posts: 129

Re: this is what it has come down to [#permalink]
Show Tags
13 Nov 2009, 21:47
Bunuel wrote: rvthryet wrote: If x represents the sum of all the positive threedigit numbers that can be constructed using each of the distinct nonzero digits a, b, and c exactly once, what is the largest integer by which x must be divisible? (A) 3 (B) 6 (C) 11 (D) 22 (E) 222 I have never really understood the thinking behind this... Using THREE nonzero digits a,b,c only, we can construct 3!=6 numbers: abc, acb, bac, bca, cab, cba. Their sum would be: \(x=(100a+10b+c)+(100a+10c+b)+(100b+10a+c)+(100b+10c+a)+(100c+10a+b)+(100c+10b+a)=\) \(=200*(a+b+c)+20*(a+b+c)+2*(a+b+c)=\) \(=222*(a+b+c)\) Largest integer by which x MUST be divisible is \(222\). Answer: E (222). Good explanation, exactly how I solved it. I love questions with elegant solutions like this. +1



CEO
Joined: 17 Nov 2007
Posts: 3584
Concentration: Entrepreneurship, Other
Schools: Chicago (Booth)  Class of 2011

Re: this is what it has come down to [#permalink]
Show Tags
13 Nov 2009, 21:59
We can also solve this one without math using symmetry: hundreds, tens and units are symmetric, so sum can be written as (y)*111. We need to check that y is even. For example, for fixed a at hundred position, there is two bc,cb combinations. Therefore, a is included twice (even number of times) into sum of hundreds. So, it is 222 By the way, it is the first time when I add something after Bunuel
_________________
HOT! GMAT TOOLKIT 2 (iOS) / GMAT TOOLKIT (Android)  The OFFICIAL GMAT CLUB PREP APP, a musthave app especially if you aim at 700+  PrepGame



Manager
Joined: 10 Aug 2009
Posts: 123

Re: Testing number properties [#permalink]
Show Tags
03 Mar 2010, 04:26
1
This post received KUDOS
E
Maybe there is a faster way to do it but I did it like this:
How many ways can you arrange abc? abc acb bac bca cab cba
which are equivalent to: 100a + 10b + c 100a + 10c + b 100b + 10a + c 100b + 10c + a 100c + 10a + b 100c + 10b + a
if you add them all together you get 222a + 222b + 222c



Intern
Joined: 03 Dec 2010
Posts: 22

Re: If x represents the sum of all the positive threedigit [#permalink]
Show Tags
31 Mar 2012, 03:27
To Bunuel, I've gone thorugh ur notes for each Quant topic and I try to solve topic wise questions from gmatclub. Sometimes I'm not able to figure out how to start with the problem, or I should say how to apply the properties learned since, the techniques you give in your solution for a given problem are not there in properties or formulaes. What do you recommend ? I plan to give my Gmat nxt mnth end. This Tuesday, Veritas prep test I took I scored 600, Q44, verbal 33. Kindly assist. Thanks.



Manager
Joined: 26 Jul 2011
Posts: 117
Location: India
WE: Marketing (Manufacturing)

Re: If x represents the sum of all the positive threedigit [#permalink]
Show Tags
30 Jul 2012, 04:26
.Though I was able to solve it (in a random way), but was unable to come up with a concrete approach. @NickK kudos for that perfect one. This is how I did.....
The question asked for the largest divisor and thus we need to form 6 largest number that could be made using 3 distinct nonzero digits....987+978+897+879+798+789 = 5328...start from the largest number provided in the answer..222 divides 5328 completely hence is the answer



GMAT Club Legend
Joined: 09 Sep 2013
Posts: 16002

Re: If x represents the sum of all the positive threedigit [#permalink]
Show Tags
19 Sep 2013, 10:20
1
This post received KUDOS
Hello from the GMAT Club BumpBot! Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up  doing my job. I think you may find it valuable (esp those replies with Kudos). Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
GMAT Books  GMAT Club Tests  Best Prices on GMAT Courses  GMAT Mobile App  Math Resources  Verbal Resources



Manager
Joined: 23 May 2013
Posts: 126

Re: If x represents the sum of all the positive threedigit [#permalink]
Show Tags
01 Oct 2013, 06:40
ratinarace wrote: .Though I was able to solve it (in a random way), but was unable to come up with a concrete approach. @NickK kudos for that perfect one. This is how I did.....
The question asked for the largest divisor and thus we need to form 6 largest number that could be made using 3 distinct nonzero digits....987+978+897+879+798+789 = 5328...start from the largest number provided in the answer..222 divides 5328 completely hence is the answer Agree, substitution works the best for 'must be true' problems.
_________________
“Confidence comes not from always being right but from not fearing to be wrong.”



Manager
Joined: 29 Aug 2013
Posts: 77
Location: United States
Concentration: Finance, International Business
GMAT 1: 590 Q41 V29 GMAT 2: 540 Q44 V20
GPA: 3.5
WE: Programming (Computer Software)

Re: this is what it has come down to [#permalink]
Show Tags
02 Oct 2013, 00:27
Bunuel wrote: rvthryet wrote: If x represents the sum of all the positive threedigit numbers that can be constructed using each of the distinct nonzero digits a, b, and c exactly once, what is the largest integer by which x must be divisible? (A) 3 (B) 6 (C) 11 (D) 22 (E) 222 I have never really understood the thinking behind this... Using THREE nonzero digits a,b,c only, we can construct 3!=6 numbers: abc, acb, bac, bca, cab, cba. Their sum will be: \(x=(100a+10b+c)+(100a+10c+b)+(100b+10a+c)+(100b+10c+a)+(100c+10a+b)+(100c+10b+a)=\) \(=200*(a+b+c)+20*(a+b+c)+2*(a+b+c)=\) \(=222*(a+b+c)\) Largest integer by which x MUST be divisible is \(222\). Answer: E (222). Hi Bunuel, Can you please explain me what will be the value of "x" in this question. If it were asked what is the value of x? Thanks!



Math Expert
Joined: 02 Sep 2009
Posts: 39719

Re: this is what it has come down to [#permalink]
Show Tags
02 Oct 2013, 03:12
shameekv wrote: Bunuel wrote: rvthryet wrote: If x represents the sum of all the positive threedigit numbers that can be constructed using each of the distinct nonzero digits a, b, and c exactly once, what is the largest integer by which x must be divisible? (A) 3 (B) 6 (C) 11 (D) 22 (E) 222 I have never really understood the thinking behind this... Using THREE nonzero digits a,b,c only, we can construct 3!=6 numbers: abc, acb, bac, bca, cab, cba. Their sum will be: \(x=(100a+10b+c)+(100a+10c+b)+(100b+10a+c)+(100b+10c+a)+(100c+10a+b)+(100c+10b+a)=\) \(=200*(a+b+c)+20*(a+b+c)+2*(a+b+c)=\) \(=222*(a+b+c)\) Largest integer by which x MUST be divisible is \(222\). Answer: E (222). Hi Bunuel, Can you please explain me what will be the value of "x" in this question. If it were asked what is the value of x? Thanks! We cannot say what x is. If a, b, and c, are 1, 2, and 3 respectively, then x = 123 + 132 + 213 + 231 + 312 + 321 = 1,332 = 6*222 (the least possible value of x). ... If a, b, and c, are 7, 8, and 9 respectively, then x = 789 + 798 + 879 + 897 + 978 + 987 = 5,328 = 24*222 (the greatest possible value of x). Hope it helps.
_________________
New to the Math Forum? Please read this: All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Manager
Joined: 29 Aug 2013
Posts: 77
Location: United States
Concentration: Finance, International Business
GMAT 1: 590 Q41 V29 GMAT 2: 540 Q44 V20
GPA: 3.5
WE: Programming (Computer Software)

Re: If x represents the sum of all the positive threedigit [#permalink]
Show Tags
02 Oct 2013, 03:27
Hi Bunuel,
Thanks for the clarification. I thought it is the sum of all such 3digit numbers that have distinct numbers.
What in the case "x is the sum of all the 3digit numbers that have distinct numbers". How do you calculate the value of x in such case. I tried many things but couldn't work it out.
I saw such type of question recently where x was required to be calculated but the digits could be repeated and that made it simple. But I couldn't figure out with this restriction. Could you please help me out on that?
Thanks, Shameek



Intern
Joined: 08 Oct 2012
Posts: 1
Location: United States
Concentration: General Management, Technology
GPA: 2.3
WE: Engineering (Computer Software)

Re: If x represents the sum of all the positive threedigit [#permalink]
Show Tags
26 Oct 2014, 12:52
Shamee, to solve the problem in a simpler manner why don't you assume the numbers a, b and c to be 1, 2 and 3 respectively?
Thus, the distinct numbers that can be formed would be  123 132 213 231 312 321
If you sum these up you get a total of 1332.
Then proceed to plug in the answer options to find the greatest number that divides 1332.
From the options  (A) 3  Yes (B) 6  Yes (C) 11  No (D) 22  No (E) 222  Yes
Clearly, since 222 is the greatest, E is the right option.



GMAT Club Legend
Joined: 09 Sep 2013
Posts: 16002

Re: If x represents the sum of all the positive threedigit [#permalink]
Show Tags
18 Jan 2016, 18:30
Hello from the GMAT Club BumpBot! Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up  doing my job. I think you may find it valuable (esp those replies with Kudos). Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
GMAT Books  GMAT Club Tests  Best Prices on GMAT Courses  GMAT Mobile App  Math Resources  Verbal Resources



Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 7446
Location: Pune, India

Re: If x represents the sum of all the positive threedigit [#permalink]
Show Tags
18 Jan 2016, 22:29
pritishpratap wrote: Shamee, to solve the problem in a simpler manner why don't you assume the numbers a, b and c to be 1, 2 and 3 respectively?
Thus, the distinct numbers that can be formed would be  123 132 213 231 312 321
If you sum these up you get a total of 1332.
Then proceed to plug in the answer options to find the greatest number that divides 1332.
From the options  (A) 3  Yes (B) 6  Yes (C) 11  No (D) 22  No (E) 222  Yes
Clearly, since 222 is the greatest, E is the right option. Here is the catch in "assuming values" in this question: The question is a "must be true" question. How do you know that what holds for values 1, 2 and 3 will be true for values say 2, 3 and 7 too? What if sum of numbers formed by 2, 3 and 7 is not divisible by 222? You do need to apply logic to confirm "must be true".
_________________
Karishma Veritas Prep  GMAT Instructor My Blog
Get started with Veritas Prep GMAT On Demand for $199
Veritas Prep Reviews



GMAT Club Legend
Joined: 09 Sep 2013
Posts: 16002

Re: If x represents the sum of all the positive threedigit [#permalink]
Show Tags
06 Feb 2017, 11:57
Hello from the GMAT Club BumpBot! Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up  doing my job. I think you may find it valuable (esp those replies with Kudos). Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
GMAT Books  GMAT Club Tests  Best Prices on GMAT Courses  GMAT Mobile App  Math Resources  Verbal Resources



Director
Joined: 14 Nov 2016
Posts: 977
Location: Malaysia

Re: If x represents the sum of all the positive threedigit [#permalink]
Show Tags
31 Mar 2017, 00:56
1
This post received KUDOS
rvthryet wrote: If x represents the sum of all the positive threedigit numbers that can be constructed using each of the distinct nonzero digits a, b, and c exactly once, what is the largest integer by which x must be divisible?
(A) 3 (B) 6 (C) 11 (D) 22 (E) 222 Bunuel, This question has been wrongly tagged. The original source is Manhattan Prep, Challenge Problems (2002, December 2, ThreeDigit Divisibility).
Attachments
Untitled.jpg [ 64.06 KiB  Viewed 1296 times ]
_________________
"Be challenged at EVERY MOMENT."
“Strength doesn’t come from what you can do. It comes from overcoming the things you once thought you couldn’t.”
"Each stage of the journey is crucial to attaining new heights of knowledge."
Rules for posting in verbal forum  Please DO NOT post short answer in your post!



Math Expert
Joined: 02 Sep 2009
Posts: 39719

Re: If x represents the sum of all the positive threedigit [#permalink]
Show Tags
31 Mar 2017, 01:50
ziyuen wrote: rvthryet wrote: If x represents the sum of all the positive threedigit numbers that can be constructed using each of the distinct nonzero digits a, b, and c exactly once, what is the largest integer by which x must be divisible?
(A) 3 (B) 6 (C) 11 (D) 22 (E) 222 Bunuel, This question has been wrongly tagged. The original source is Manhattan Prep, Challenge Problems (2002, December 2, ThreeDigit Divisibility). Edited. Thank you.
_________________
New to the Math Forum? Please read this: All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics




Re: If x represents the sum of all the positive threedigit
[#permalink]
31 Mar 2017, 01:50







