Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

If x represents the sum of all the positive three-digit [#permalink]

Show Tags

13 Nov 2009, 20:35

5

This post received KUDOS

38

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

95% (hard)

Question Stats:

48% (01:36) correct
52% (02:00) wrong based on 999 sessions

HideShow timer Statistics

If x represents the sum of all the positive three-digit numbers that can be constructed using each of the distinct nonzero digits a, b, and c exactly once, what is the largest integer by which x must be divisible?

where did this question come from wow I have like no idea where to begin I would assume 123 and 987 which are two combinations are both both divisible by 3 as the GCD so 3? A?

If x represents the sum of all the positive three-digit numbers that can be constructed using each of the distinct nonzero digits a, b, and c exactly once, what is the largest integer by which x must be divisible? (A) 3 (B) 6 (C) 11 (D) 22 (E) 222

I have never really understood the thinking behind this...

If x represents the sum of all the positive three-digit numbers that can be constructed using each of the distinct nonzero digits a, b, and c exactly once, what is the largest integer by which x must be divisible? (A) 3 (B) 6 (C) 11 (D) 22 (E) 222

I have never really understood the thinking behind this...

We can also solve this one without math using symmetry: hundreds, tens and units are symmetric, so sum can be written as (y)*111. We need to check that y is even. For example, for fixed a at hundred position, there is two bc,cb combinations. Therefore, a is included twice (even number of times) into sum of hundreds. So, it is 222

By the way, it is the first time when I add something after Bunuel
_________________

Re: If x represents the sum of all the positive three-digit [#permalink]

Show Tags

31 Mar 2012, 03:27

To Bunuel,

I've gone thorugh ur notes for each Quant topic and I try to solve topic wise questions from gmatclub. Sometimes I'm not able to figure out how to start with the problem, or I should say how to apply the properties learned since, the techniques you give in your solution for a given problem are not there in properties or formulaes. What do you recommend ? I plan to give my Gmat nxt mnth end. This Tuesday, Veritas prep test I took I scored 600, Q44, verbal 33.

Re: If x represents the sum of all the positive three-digit [#permalink]

Show Tags

30 Jul 2012, 04:26

.Though I was able to solve it (in a random way), but was unable to come up with a concrete approach. @NickK kudos for that perfect one. This is how I did.....

The question asked for the largest divisor and thus we need to form 6 largest number that could be made using 3 distinct nonzero digits....987+978+897+879+798+789 = 5328...start from the largest number provided in the answer..222 divides 5328 completely hence is the answer

Re: If x represents the sum of all the positive three-digit [#permalink]

Show Tags

01 Oct 2013, 06:40

ratinarace wrote:

.Though I was able to solve it (in a random way), but was unable to come up with a concrete approach. @NickK kudos for that perfect one. This is how I did.....

The question asked for the largest divisor and thus we need to form 6 largest number that could be made using 3 distinct nonzero digits....987+978+897+879+798+789 = 5328...start from the largest number provided in the answer..222 divides 5328 completely hence is the answer

Agree, substitution works the best for 'must be true' problems.
_________________

“Confidence comes not from always being right but from not fearing to be wrong.”

If x represents the sum of all the positive three-digit numbers that can be constructed using each of the distinct nonzero digits a, b, and c exactly once, what is the largest integer by which x must be divisible? (A) 3 (B) 6 (C) 11 (D) 22 (E) 222

I have never really understood the thinking behind this...

If x represents the sum of all the positive three-digit numbers that can be constructed using each of the distinct nonzero digits a, b, and c exactly once, what is the largest integer by which x must be divisible? (A) 3 (B) 6 (C) 11 (D) 22 (E) 222

I have never really understood the thinking behind this...

Largest integer by which x MUST be divisible is \(222\).

Answer: E (222).

Hi Bunuel, Can you please explain me what will be the value of "x" in this question. If it were asked what is the value of x?

Thanks!

We cannot say what x is.

If a, b, and c, are 1, 2, and 3 respectively, then x = 123 + 132 + 213 + 231 + 312 + 321 = 1,332 = 6*222 (the least possible value of x). ... If a, b, and c, are 7, 8, and 9 respectively, then x = 789 + 798 + 879 + 897 + 978 + 987 = 5,328 = 24*222 (the greatest possible value of x).

Re: If x represents the sum of all the positive three-digit [#permalink]

Show Tags

02 Oct 2013, 03:27

Hi Bunuel,

Thanks for the clarification. I thought it is the sum of all such 3-digit numbers that have distinct numbers.

What in the case "x is the sum of all the 3-digit numbers that have distinct numbers". How do you calculate the value of x in such case. I tried many things but couldn't work it out.

I saw such type of question recently where x was required to be calculated but the digits could be repeated and that made it simple. But I couldn't figure out with this restriction. Could you please help me out on that?

Shamee, to solve the problem in a simpler manner why don't you assume the numbers a, b and c to be 1, 2 and 3 respectively?

Thus, the distinct numbers that can be formed would be - 123 132 213 231 312 321

If you sum these up you get a total of 1332.

Then proceed to plug in the answer options to find the greatest number that divides 1332.

From the options - (A) 3 - Yes (B) 6 - Yes (C) 11 - No (D) 22 - No (E) 222 - Yes

Clearly, since 222 is the greatest, E is the right option.

Here is the catch in "assuming values" in this question: The question is a "must be true" question. How do you know that what holds for values 1, 2 and 3 will be true for values say 2, 3 and 7 too? What if sum of numbers formed by 2, 3 and 7 is not divisible by 222? You do need to apply logic to confirm "must be true".
_________________

Re: If x represents the sum of all the positive three-digit [#permalink]

Show Tags

31 Mar 2017, 00:56

1

This post received KUDOS

rvthryet wrote:

If x represents the sum of all the positive three-digit numbers that can be constructed using each of the distinct nonzero digits a, b, and c exactly once, what is the largest integer by which x must be divisible?

(A) 3 (B) 6 (C) 11 (D) 22 (E) 222

Bunuel, This question has been wrongly tagged. The original source is Manhattan Prep, Challenge Problems (2002, December 2, Three-Digit Divisibility).

Attachments

Untitled.jpg [ 64.06 KiB | Viewed 3588 times ]

_________________

"Be challenged at EVERY MOMENT."

“Strength doesn’t come from what you can do. It comes from overcoming the things you once thought you couldn’t.”

"Each stage of the journey is crucial to attaining new heights of knowledge."

If x represents the sum of all the positive three-digit numbers that can be constructed using each of the distinct nonzero digits a, b, and c exactly once, what is the largest integer by which x must be divisible?

(A) 3 (B) 6 (C) 11 (D) 22 (E) 222

Bunuel, This question has been wrongly tagged. The original source is Manhattan Prep, Challenge Problems (2002, December 2, Three-Digit Divisibility).

If x represents the sum of all the positive three-digit [#permalink]

Show Tags

09 Oct 2017, 03:10

I solved it in a bit different way. Not sure if this is correct.

There are 3 numbers a, b, c so there can be 6 arrangements of these numbers. So, 6 possible numbers are there ( just to be sure i am not missing)

abc +acb +bac +bca +cba +cab 6a+6b+6c

Now if we factor out 6 --> 6( a+b+c ) from this we know the answer must be a multiple of 6. It can not be 6 as a+b+c wpuld yield some integer and 6*someinteger > 6 . So the only possible outcome is 222 which is a multiple of 6 other than Choice B. Answer E
_________________