guerrero25 wrote:

If z is a multiple of 9 and w is a multiple of 4, is zw a multiple of 126?

(1) z is a multiple of 21

(2) w is a multiple of 25

\(\frac{z}{{{3^2}}} = \operatorname{int} \,\,\,\,\,;\,\,\,\,\,\,\,\frac{w}{{{2^2}}} = \operatorname{int}\)

\(\frac{{zw}}{{2 \cdot {3^2} \cdot 7}}\,\,\,\mathop = \limits^? \,\,\,\operatorname{int}\)

\(\left( 1 \right)\,\,\,\,\left\{ \begin{gathered}

\,\frac{z}{{3 \cdot 7}} = \operatorname{int} \,\,\,\, \cap \,\,\,\,\frac{z}{{{3^2}}} = \operatorname{int} \,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,\,\,\frac{z}{{{3^2} \cdot 7}} = \operatorname{int} \, \hfill \\

\,\frac{w}{{{2^2}}} = \operatorname{int} \,\,\,\,\,\, \Rightarrow \,\,\,\,\frac{w}{2} = \operatorname{int} \, \hfill \\

\end{gathered} \right.\,\,\,\,\,\,\,\,\,\,\)

\(?\,\,\,:\,\,\,\,\frac{{zw}}{{2 \cdot {3^2} \cdot 7}} = \left( {\frac{z}{{{3^2} \cdot 7}}} \right) \cdot \left( {\frac{w}{2}} \right)\,\,\, = \,\,\,\operatorname{int} \,\, \cdot \,\,\,\operatorname{int} \,\,\,\, = \operatorname{int} \,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,\left\langle {{\text{YES}}} \right\rangle\)

\(\left( 2 \right)\,\,\,\,\frac{w}{{{5^2}}} = \operatorname{int} \,\,\,\,\,\left\{ \begin{gathered}

\,{\text{Take}}\,\,\,\left( {z,w} \right) = \left( {0,0} \right)\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,\left\langle {{\text{YES}}} \right\rangle \hfill \\

\,{\text{Take}}\,\,\,\left( {z,w} \right) = \left( {{3^2},{2^2} \cdot {5^2}} \right)\,\,\,\,\,\,\,\mathop \Rightarrow \limits^{{\text{7}}\,\,{\text{missing}}} \,\,\,\,\,\,\left\langle {{\text{NO}}} \right\rangle \hfill \\

\end{gathered} \right.\,\,\,\,\,\)

This solution follows the notations and rationale taught in the GMATH method.

Regards,

Fabio.

_________________

Fabio Skilnik :: GMATH method creator (Math for the GMAT)

Our high-level "quant" preparation starts here: https://gmath.net