dabaobao wrote:
GMATPrepNow wrote:
gmatt1476 wrote:
In an auditorium, 360 chairs are to be set up in a rectangular arrangement with x rows of exactly y chairs each. If the only other restriction is that 10 < x < 25, how many different rectangular arrangements are possible?
A. Four
B. Five
C. Six
D. Eight
E. Nine
PS66602.01
From the given information, the TOTAL number of chairs = xy
This means: xy = 360
Since x and y must be POSITIVE INTEGERS, there is a finite number of possibilities.
To help us list the pairs of values with a product of 360, let's find the prime factorization of 360
360 = (2)(2)(2)(3)(3)(5)
When we consider the fact that 10 < x < 25, the possibilities are:
x = 12 & y = 30
x = 15 & y = 24
x = 18 & y = 20
x = 20 & y = 18
x = 24 & y = 15
There are five such possibilities
Answer: B
Cheers,
Brent
ScottTargetTestPrep This question is simple but took a bit of time in order to avoid missing any values of x. While I know how to solve it instantly by taking factor pairs, it did take me 3 min for me to double check to make sure I didn't miss any value of x in that range. Is there a quick to find all values of x that satisfy the condition 10 < x < 25 since we can have (3+1)(2+1)(1+1) = 24 values of x? Thanks!
Since you know there are (3+1)(2+1)(1+1) = 24 possible values of x, I understand you already factored 360 = 2^3 * 3^2 * 5.
First of all, you definitely don't need to consider all 24 possibilities for x since we are only interested in the values of x that satisfy 10 < x < 25. In order to make sure we are not missing any factor pairs, we will find all values of x in the interval 10 < x < 25 that are a factor of 360.
We already have the prime factorization 360 = 2^3 * 3^2 * 5; therefore we can immediately eliminate the primes in the interval 10 < x < 25 which do not appear in the prime factorization of 360. Namely, we eliminate the values x = 11, 13, 17, 19 and 23. Next, we can eliminate any multiples of 7 and 11 as well (since 360 cannot be divisible by any multiple of 7 or 11). Thus, the values x = 14, x = 21 and x = 22 are also eliminated. We are left with x = 12, 15, 16, 18, 20, 24. At this point, we can simply check these six values and determine that 360 is divisible by all except 16 (too few factors of 2 in 360 to be divisible by 16). This is the fastest way I can come up with which will guarantee that you won't miss any factor pairs.
_________________
★
★
★
★
★
250 REVIEWS
5-STAR RATED ONLINE GMAT QUANT SELF STUDY COURSE
NOW WITH GMAT VERBAL (BETA)
See why Target Test Prep is the top rated GMAT quant course on GMAT Club. Read Our Reviews