Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

In list L above, there are 3 positive integers, where each [#permalink]

Show Tags

17 Dec 2012, 16:41

3

This post received KUDOS

14

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

75% (hard)

Question Stats:

52% (03:22) correct
48% (02:28) wrong based on 138 sessions

HideShow timer Statistics

List L: ABC, BCA, CAB

In list L above, there are 3 positive integers, where each of A, B, and C is a different nonzero digit. Which of the following is the sum of all the positive integers that MUST be factors of the sum of the integers in list L?

In list L above, there are 3 positive integers, where each of A, B, and C is a different nonzero digit. Which of the following is the sum of all the positive integers that MUST be factors of the sum of the integers in list L?

A. 47 B. 114 C. 152 D. 161 E. 488

Sum = (100A + 10B + C) + (100B + 10C + A) + (100C + 10A + B) = 111*(A + B + C).

So, we have that the sum will be a multiple of 111=3*37.

As for A + B + C: if A=1, B=2 and C=4, then A + B + C = 7, so the sum will also be divisible by 7 BUT if A=1, B=2 and C=8, then A + B + C = 11, so the sum will also be divisible by 11. This implies that A + B + C will not produce the same factors for all possible values of A, B and C.

Therefore, we can say that 111*(A + B + C) MUST be divisible only by 111 --> so, by 1, 3, 37, and 111 --> 1 + 3 + 37 + 111 = 152.

Re: In list L above, there are 3 positive integers, where each [#permalink]

Show Tags

18 Dec 2012, 03:21

2

This post received KUDOS

1

This post was BOOKMARKED

The list L consists of : ABC, BCA, CAB.

Sum of these numbers will be \(111(A+B+C)\). Since A, B, C are distinct non-zero digits, hence minimum value of A+B+C=6. Hence the sum will be 111*6 or 111*7 or 111*8.........

So atleast \(111\) will be a factor of the sum of the integers.

On prime factorization, we will get 37 and 3 as the prime factors.

Sum of the factors: {a^ (p+1) - 1}{b^ (q+1) - 1}{c^ (r+1) - 1} / (a-1)*(b-1)*(c-1)

Here a=37, b=3, p=1, q=1

On applying the formula: we get \((1368*8)/(36*2)\) or \(152\). Hope that helps.
_________________

Re: In list L above, there are 3 positive integers, where each [#permalink]

Show Tags

20 Dec 2012, 11:24

1

This post was BOOKMARKED

To explain still elaborately take any number of the format given:123+231+312=666==>111(1+2+3) So now the question asks for which of the following will be the factors of all the three postive integers. Only 111 can be the factor of all 3 +ve integers So the factors of 111 are 1,3,37,111.. Making a sum ofall the factors gives the answer E
_________________

"Giving kudos" is a decent way to say "Thanks" and motivate contributors. Please use them, it won't cost you anything

Re: In list L above, there are 3 positive integers, where each [#permalink]

Show Tags

12 Nov 2014, 10:22

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Re: In list L above, there are 3 positive integers, where each [#permalink]

Show Tags

12 Dec 2015, 01:27

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Re: In list L above, there are 3 positive integers, where each [#permalink]

Show Tags

01 Jan 2017, 22:30

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

There’s something in Pacific North West that you cannot find anywhere else. The atmosphere and scenic nature are next to none, with mountains on one side and ocean on...

This month I got selected by Stanford GSB to be included in “Best & Brightest, Class of 2017” by Poets & Quants. Besides feeling honored for being part of...

Joe Navarro is an ex FBI agent who was a founding member of the FBI’s Behavioural Analysis Program. He was a body language expert who he used his ability to successfully...