Last visit was: 19 Nov 2025, 07:48 It is currently 19 Nov 2025, 07:48
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
kp1811
Joined: 30 Aug 2009
Last visit: 05 Sep 2015
Posts: 128
Own Kudos:
382
 [26]
Given Kudos: 5
Location: India
Concentration: General Management
Posts: 128
Kudos: 382
 [26]
3
Kudos
Add Kudos
23
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
sriharimurthy
Joined: 29 Oct 2009
Last visit: 23 Apr 2025
Posts: 126
Own Kudos:
3,051
 [58]
Given Kudos: 18
GMAT 1: 750 Q50 V42
GMAT 1: 750 Q50 V42
Posts: 126
Kudos: 3,051
 [58]
27
Kudos
Add Kudos
31
Bookmarks
Bookmark this Post
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,389
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,389
Kudos: 778,253
 [21]
14
Kudos
Add Kudos
7
Bookmarks
Bookmark this Post
General Discussion
User avatar
swatirpr
Joined: 13 Oct 2009
Last visit: 18 Jul 2011
Posts: 62
Own Kudos:
396
 [3]
Given Kudos: 66
Location: USA
Schools:IU KSB
Posts: 62
Kudos: 396
 [3]
2
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
Bunuel
Is the perimeter of triangle ABC greater than 20?

(1) BC-AC=10.
(2) The area of the triangle is 20.

I pick 'A'

(1) Sides AB, BC, AC

Given BC-AC=10
BC=AC+10
BC>10

And BC-AC< AB <BC+AC

so AB >10

so whatever is the value of AC

AB+BC+AC >20 Sufficient


(2) Since type of triangle is not given, it is not possible to find only one set of lengths of sides. Not Sufficient
User avatar
srini123
Joined: 13 Oct 2009
Last visit: 17 Feb 2021
Posts: 152
Own Kudos:
264
 [2]
Given Kudos: 38
Affiliations: PMP
Posts: 152
Kudos: 264
 [2]
1
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
Answer A

basing S1 on the rule that "the length of a triangle is always greater than the absolute difference of the lengths of other two sides"
we know that other side must be > 10 and from S1 we know that atleast one other side is 10, hence sufficient.

S2) not sufficient. ab=40, a,b can be 5,8 or 2, 20
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,389
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,389
Kudos: 778,253
Kudos
Add Kudos
Bookmarks
Bookmark this Post
(A) is the straightforward answer and it's not correct. The question is a bit trickier than this.
avatar
gmatter10
Joined: 11 Nov 2009
Last visit: 24 Dec 2009
Posts: 6
Own Kudos:
Given Kudos: 1
Posts: 6
Kudos: 4
Kudos
Add Kudos
Bookmarks
Bookmark this Post
The answer should be C.

The explanation for why Statement 1 is sufficient is already given above

For Statement 2 it is stated that Area = 20

=> 1/2*B*H = 20 or B*H = 40.

If we look at the possible twin factors that could yield 40 we have {1,40}, {2,20}...{5,8}..

If we consider the base to be any one of the numbers occuring in the twin factors, and the height to be the other number, both the sides other than the base will always have a length that is greater than the height.

This implies that the perimeter will always be greater than 20 if the area is 20.
User avatar
Octobre
Joined: 18 Nov 2009
Last visit: 06 Jun 2018
Posts: 39
Own Kudos:
53
 [1]
Given Kudos: 168
Location: Switzerland
Concentration: Entrepreneurship, Technology
GMAT 1: 740 Q47 V45
GMAT 1: 740 Q47 V45
Posts: 39
Kudos: 53
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
I go for D each statement alone is suff.
(1) is evident
(2) is more tricky but going for one extrem (base, height) (40,1) to the other (1, 40) and the mid-couple (20, 2), the perimeter will seemingly always be greater than 20.

OA?
User avatar
GMAT TIGER
Joined: 29 Aug 2007
Last visit: 17 Aug 2011
Posts: 1,013
Own Kudos:
1,783
 [2]
Given Kudos: 19
Posts: 1,013
Kudos: 1,783
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
Is the perimeter of triangle ABC greater than 20?

(1) BC-AC=10.
(2) The area of the triangle is 20.

AB+AC+BC = 20?

Use third-side rule: The third side cannot be > sum of the rest two sides and smaller than the difference of the two sides:


traingle-sides-85784.html#p643924


Also: The smallest perimeter is of the equilateral triangle for a given area or perimeter.

1: BC-AC=10.
BC>10
AC>0
AB>BC-AC
Add up these all:
AB+AC+BC > 10+0+BC-AC
AB+AC+BC > 10+0+(10+x) where x>0
AB+AC+BC > 20+x. Suff.

2: The area of the triangle is 20.
The smallest perimeter of this triangle is s if the triangle is equilateral. If so, s is:

20 = s^2 (Sqrt3/4)
s^2 = 80/(Sqrt 3)
s = 6.8

Perimeter = 3s = 3(6.8) = 20.40>20. SUFF.

D.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,389
Own Kudos:
778,253
 [9]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,389
Kudos: 778,253
 [9]
2
Kudos
Add Kudos
7
Bookmarks
Bookmark this Post
sriharimurthy
Question Stem : Is AB + BC + AC > 20?

St. (1) : BC = AC + 10

Triangle Property : The sum of any two sides of a triangle is always greater than the third.

Since we are given that one of the sides is greater than 10, the sum of the other two sides must also be greater than 10.
Hence the perimeter will always be greater than 20.
Statement is sufficient.

St. (2) : A = 40

Triangle Property : For triangles with same area, the perimeter is smallest for an equilateral triangle.

Area of equilateral triangle with side x = \(\frac{\sqrt{3}}{4}x^2\)

Therefore, \(\frac{\sqrt{3}}{4}x^2\) = 40

\(x^2 = \frac{160}{\sqrt{3}}\)

Now, in order to speed up calculations, I will assume \(\sqrt{3}\) to be equal to 2.

If the condition is satisfied with \(\sqrt{3}\) equal to 2 then it will definitely be satisfied with the actual value of \(\sqrt{3}\) which is less than 2.

Therefore, \(x^2 = \frac{160}{2}\) = 80

This tells us that x is almost 9. More importantly, it tells us that x is greater than 8. Thus perimeter will be 3*x = 24.

Since this is the minimum perimeter possible (actually it is still less than what the actual minimum would be due to our approximations), we can conclude that the question stem will always be true.

Hence Sufficient.

Answer : D


Another interesting triangle property : For triangles with same perimeter, the area is maximum for an equilateral triangle. (If you think about it, this property goes hand in hand with the one we used in St. 2).

Yes, the OA is D. It was the hard one.

This problem could be solved knowing the properties sriharimurthy mentioned. +1.

For (1):
The length of any side of a triangle must be larger than the positive difference of the other two sides, but smaller than the sum of the other two sides.

For (2):
A. For a given perimeter equilateral triangle has the largest area.
B. For a given area equilateral triangle has the smallest perimeter.
User avatar
sriharimurthy
Joined: 29 Oct 2009
Last visit: 23 Apr 2025
Posts: 126
Own Kudos:
3,051
 [1]
Given Kudos: 18
GMAT 1: 750 Q50 V42
GMAT 1: 750 Q50 V42
Posts: 126
Kudos: 3,051
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Thanks Bunuel.

Though I just realized something. I considered the area given to be 40 by mistake. It is actually 20.

Although the logic will be same, the calculations will be harder since we will have to use the real value of \(\sqrt{3}\). (no margin for approximations!)

Sorry for the mistake guys. However, as long as you understand the logic, it shouldn't matter. At least you'll know how to go about approaching such questions in the future!

Cheers.

Ps. Any trick for the calculations Bunuel?
User avatar
anilnandyala
Joined: 07 Feb 2010
Last visit: 19 Jun 2012
Posts: 101
Own Kudos:
Given Kudos: 101
Posts: 101
Kudos: 4,710
Kudos
Add Kudos
Bookmarks
Bookmark this Post
for statement 2 u r using properties of equilateral triangle but no where in the q it is mentioned it is equilateral triangle
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,389
Own Kudos:
778,253
 [4]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,389
Kudos: 778,253
 [4]
1
Kudos
Add Kudos
3
Bookmarks
Bookmark this Post
anilnandyala
for statement 2 u r using properties of equilateral triangle but no where in the q it is mentioned it is equilateral triangle

We are not told that ABC is an equilateral triangle.

Let's assume the perimeter is 20. The largest area with given perimeter will have the equilateral triangle, so side=20/3. Then we calculated the area of this hypothetical equilateral triangle and get that its area<20 but statement (2) says area=20 so as p=20 is not enough to produce area=20 even for the best case (for equilateral triangle) then perimeter must be more than 20.

Hope it's clear.
avatar
psirus
Joined: 24 Nov 2010
Last visit: 26 Nov 2012
Posts: 5
Own Kudos:
Posts: 5
Kudos: 13
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
sriharimurthy
Thanks Bunuel.

Though I just realized something. I considered the area given to be 40 by mistake. It is actually 20.

Although the logic will be same, the calculations will be harder since we will have to use the real value of \(\sqrt{3}\). (no margin for approximations!)

Sorry for the mistake guys. However, as long as you understand the logic, it shouldn't matter. At least you'll know how to go about approaching such questions in the future!

Cheers.

Ps. Any trick for the calculations Bunuel?

I would go backward.

Let's assume the perimeter is 20. The largest area with given perimeter will have the equilateral triangle, so side=20/3. Let's calculate the area and if the area will be less than 20 it'll mean that perimeter must be more than 20.

\(Area=s^2*\frac{\sqrt{3}}{4}=(\frac{20}{3})^2*\frac{\sqrt{3}}{4}=\frac{100*\sqrt{3}}{9}=~\frac{173}{9}<20\)

Think this way is easier. \(\sqrt{3}\approx{1.73}\).

Bunuel,

is it necessary to solve it? what if you just recognized that you could solve it and the answer is either > 20 or < 20? I'm just thinking in terms of timing strategy...
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,389
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,389
Kudos: 778,253
Kudos
Add Kudos
Bookmarks
Bookmark this Post
psirus
Bunuel
sriharimurthy
Thanks Bunuel.

Though I just realized something. I considered the area given to be 40 by mistake. It is actually 20.

Although the logic will be same, the calculations will be harder since we will have to use the real value of \(\sqrt{3}\). (no margin for approximations!)

Sorry for the mistake guys. However, as long as you understand the logic, it shouldn't matter. At least you'll know how to go about approaching such questions in the future!

Cheers.

Ps. Any trick for the calculations Bunuel?

I would go backward.

Let's assume the perimeter is 20. The largest area with given perimeter will have the equilateral triangle, so side=20/3. Let's calculate the area and if the area will be less than 20 it'll mean that perimeter must be more than 20.

\(Area=s^2*\frac{\sqrt{3}}{4}=(\frac{20}{3})^2*\frac{\sqrt{3}}{4}=\frac{100*\sqrt{3}}{9}=~\frac{173}{9}<20\)

Think this way is easier. \(\sqrt{3}\approx{1.73}\).

Bunuel,

is it necessary to solve it? what if you just recognized that you could solve it and the answer is either > 20 or < 20? I'm just thinking in terms of timing strategy...

You have to solve it. If we get that the minimum perimeter possible for a triangle with an area of 20 is less than 20 then we won't be able to answer the question. Similarly if we get that the maximum area possible for a triangle with a perimeter of 20 is more than 20 (for example 25) then knowing that area is 20 won't mean that perimeter must be more than 20.

Hope it's clear.
User avatar
CrackverbalGMAT
User avatar
Major Poster
Joined: 03 Oct 2013
Last visit: 19 Nov 2025
Posts: 4,844
Own Kudos:
8,945
 [1]
Given Kudos: 225
Affiliations: CrackVerbal
Location: India
Expert
Expert reply
Posts: 4,844
Kudos: 8,945
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Solution:

Q-stem rephrased- Is AB+AC+BC >20

St(1):- BC-AC=10

=> BC = AC + 10

Since one of the sides is greater than 10, sum of the other sides is also greater than 10 and the perimeter greater than 20.

This is because the sum of two sides is greater than the third side. (Sufficient)

St(2)Area of the triangle is 20

For a given area equilateral triangle has the smallest perimeter

Now if the triangle was equilateral with area 20 then its side would have been 20/3 and thus its area would have been

=√3/4 * (20/3) * (20/3)

= √3 * (100/9) which is

√3 * 11.11 and this is LESS than 20

= >Thus p=20 is NOT enough to produce area=20 even for the best case (for equilateral triangle that has minimum perimeter)

=>The Perimeter must be more than 20. (Sufficient) (option d)

The second statement was indeed testing on the Maximum/Minimization model and first statement was testing the basic properties of triangles.

Devmitra Sen
GMAT SME
avatar
bagha1996
Joined: 02 Mar 2021
Last visit: 15 Oct 2023
Posts: 2
Given Kudos: 29
Posts: 2
Kudos: 0
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
sriharimurthy
Thanks Bunuel.

Though I just realized something. I considered the area given to be 40 by mistake. It is actually 20.

Although the logic will be same, the calculations will be harder since we will have to use the real value of \(\sqrt{3}\). (no margin for approximations!)

Sorry for the mistake guys. However, as long as you understand the logic, it shouldn't matter. At least you'll know how to go about approaching such questions in the future!

Cheers.

Ps. Any trick for the calculations Bunuel?

I would go backward.

Let's assume the perimeter is 20. The largest area with given perimeter will have the equilateral triangle, so side=20/3. Let's calculate the area and if the area will be less than 20 it'll mean that perimeter must be more than 20.

\(Area=s^2*\frac{\sqrt{3}}{4}=(\frac{20}{3})^2*\frac{\sqrt{3}}{4}=\frac{100*\sqrt{3}}{9}=~\frac{173}{9}<20\)

Think this way is easier. \(\sqrt{3}\approx{1.73}\).[/quoteHi, for given parameter the largest area will be of equilateral triangle but why are you saying that area should be > 20 ? why this comparison..the area is largest amongst various possible triangles right?
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 38,588
Own Kudos:
Posts: 38,588
Kudos: 1,079
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Moderators:
Math Expert
105389 posts
496 posts