Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.
Customized for You
we will pick new questions that match your level based on your Timer History
Track Your Progress
every week, we’ll send you an estimated GMAT score based on your performance
Practice Pays
we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:
Learn how Kamakshi achieved a GMAT 675 with an impressive 96th %ile in Data Insights. Discover the unique methods and exam strategies that helped her excel in DI along with other sections for a balanced and high score.
Learn how Keshav, a Chartered Accountant, scored an impressive 705 on GMAT in just 30 days with GMATWhiz's expert guidance. In this video, he shares preparation tips and strategies that worked for him, including the mock, time management, and more
Do RC/MSR passages scare you? e-GMAT is conducting a masterclass to help you learn – Learn effective reading strategies Tackle difficult RC & MSR with confidence Excel in timed test environment
Prefer video-based learning? The Target Test Prep OnDemand course is a one-of-a-kind video masterclass featuring 400 hours of lecture-style teaching by Scott Woodbury-Stewart, founder of Target Test Prep and one of the most accomplished GMAT instructors.
Be sure to select an answer first to save it in the Error Log before revealing the correct answer (OA)!
Difficulty:
(N/A)
Question Stats:
86%
(01:39)
correct 14%
(00:32)
wrong
based on 38
sessions
History
Date
Time
Result
Not Attempted Yet
oa7
Is the positive integer N a perfect square?
(1) The number of distinct factors of N is even. (2) The sum of all distinct factors of N is even.
Show more
Are you sure you correctly transcribed the question? As it is currently worded, the answer to this question is E. The answer WOULD be D, if we changed "distinct factors" to "POSITIVE distinct factors."
When asking questions about factors (aka divisors), the GMAT typically restricts the discussion to POSITIVE factors/divisors. If we don't specify such a restriction, then we must also consider negative factors.
From the Official Guide:
Quote:
An integer is any number in the set {. . . –3, –2, –1, 0, 1, 2, 3, . . .}. If x and y are integers and x ≠ 0, then x is a divisor (factor) of y provided that y = xn for some integer n. In this case, y is also said to be divisible by x or to be a multiple of x. For example, 7 is a divisor or factor of 28 since 28 = (7)(4), but 8 is not a divisor of 28 since there is no integer n such that 28 = 8n.
Show more
So, for example, the -2 is a factor of 6 since 6 = (-2)(-3)
Now onto the question....
----------------------------------------
Target question:Is the positive integer N a perfect square?
Statement 2: The number of distinct factors of N is even There are infinitely many values of N that satisfy this condition. Here are two: Case a: N = 3. The distinct factors of N are {-3, -1, 1, 3}. As you can see, there is an even number of distinct factors of N. In this case N is NOT a perfect square Case b: N = 4. The distinct factors of N are {-4, -2, -1, 1, 2, 4}. As you can see, there is an even number of distinct factors of N. In this case N IS perfect square Since we cannot answer the target question with certainty, statement 1 is NOT SUFFICIENT
Statement 2: The sum of all distinct factors of N is even There are infinitely many values of N that satisfy this condition. Here are two: Case a: N = 3. The distinct factors of N are {-3, -1, 1, 3}, so the sum = (-3) + (-1) + 1 + 3 = 0. The sum of the distinct factors = 0, which is EVEN. In this case N is NOT a perfect square Case b: N = 4. The distinct factors of N are {-4, -2, -1, 1, 2, 4}, so the sum = (-4) + (-2) + (-1) + 1 + 2 + 4 = 0. The sum of the distinct factors = 0, which is EVEN. In this case N IS a perfect square Since we cannot answer the target question with certainty, statement 2 is NOT SUFFICIENT
Statements 1 and 2 combined In both cases, I showed that N COULD equal 3 or 4. So, when we combine the statements, N COULD still equal 3 or 4. 3 is NOT a perfect square, and 4 IS a perfect square. Since we cannot answer the target question with certainty, the combined statements are NOT SUFFICIENT
Answer = E
Cheers, Brent
Archived Topic
Hi there,
This topic has been closed and archived due to inactivity or violation of community quality standards. No more replies are possible here.
Still interested in this question? Check out the "Best Topics" block below for a better discussion on this exact question, as well as several more related questions.
Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).
Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Archived Topic
Hi there,
This topic has been closed and archived due to inactivity or violation of community quality standards. No more replies are possible here.
Still interested in this question? Check out the "Best Topics" block above for a better discussion on this exact question, as well as several more related questions.