Last visit was: 19 Nov 2025, 07:43 It is currently 19 Nov 2025, 07:43
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
gmatjon
Joined: 18 Aug 2009
Last visit: 21 Jul 2013
Posts: 216
Own Kudos:
360
 [38]
Given Kudos: 16
Concentration: Accounting
Schools:UT at Austin, Indiana State University, UC at Berkeley
GPA: 3.8
WE 1: 5.5
WE 2: 5.5
WE 3: 6.0
GMAT 1: 700 Q49 V36
Posts: 216
Kudos: 360
 [38]
7
Kudos
Add Kudos
31
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,389
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,389
Kudos: 778,253
 [24]
14
Kudos
Add Kudos
10
Bookmarks
Bookmark this Post
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 18 Nov 2025
Posts: 16,267
Own Kudos:
76,994
 [5]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 76,994
 [5]
3
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
General Discussion
User avatar
gmatjon
Joined: 18 Aug 2009
Last visit: 21 Jul 2013
Posts: 216
Own Kudos:
Given Kudos: 16
Concentration: Accounting
Schools:UT at Austin, Indiana State University, UC at Berkeley
GPA: 3.8
WE 1: 5.5
WE 2: 5.5
WE 3: 6.0
GMAT 1: 700 Q49 V36
Posts: 216
Kudos: 360
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Thanks for fast explanation, this way, I think it better to understand, rather the explanation suggested my MGMAT.
avatar
vrk002
Joined: 08 Mar 2011
Last visit: 28 Jul 2011
Posts: 6
Own Kudos:
Given Kudos: 13
Posts: 6
Kudos: 2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
I think it is C

Clearly both of those statements are insufficient if taken individually,

If we are considering both of 'em together! then,

a = 12, b = 5, then a+b is not divisible by 7

a= 6, b = -1, then a + b is not divisible by 7

consistent answer: no; therefore, I guess it is C

Note that in both of the above cases a-b is divisible by 7 (Stmt II) and a is not divisible by 7 (statment I)
User avatar
386390
Joined: 08 Sep 2010
Last visit: 09 Nov 2011
Posts: 29
Own Kudos:
Given Kudos: 4
Posts: 29
Kudos: 85
Kudos
Add Kudos
Bookmarks
Bookmark this Post
fluke

So, the answer is C as we have proven that "a+b" is NOT divisible by 7 using both statements. What's the confusion or there isn't any?

Hi,

Please tell me if im thinking right:

generally the rule is: multiple of a number + or - multiple of a number = multiple of a number.

(1) says a = not a multiple of 7.
(2) a-b = multiple of 7

but since we don't know the exact values of the a or b, we cant say whether a+b is divisible by 7. Hence (c) gives us a definitive NO answer.?
User avatar
fluke
User avatar
Retired Moderator
Joined: 20 Dec 2010
Last visit: 24 Oct 2013
Posts: 1,099
Own Kudos:
5,095
 [1]
Given Kudos: 376
Posts: 1,099
Kudos: 5,095
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
386390
fluke

So, the answer is C as we have proven that "a+b" is NOT divisible by 7 using both statements. What's the confusion or there isn't any?

Hi,

Please tell me if im thinking right:

generally the rule is: multiple of a number + or - multiple of a number = multiple of a number.

(1) says a = not a multiple of 7.
(2) a-b = multiple of 7

but since we don't know the exact values of the a or b, we cant say whether a+b is divisible by 7. Hence (c) gives us a definitive NO answer.?

The rule you stated is correct. But, we need to take that rule one step further.

Using 1 and 2, we can definitely say that "a+b" is NOT divisible by 7, irrespective of what value "a" or "b" bears.

Just because we can DEFINITELY answer the question as NO, the statements together become sufficient.

Question is: Is a+b divisible by 7?
Answer: No, "a+b" is not divisible by 7.

If we can answer the question asked in a stem as a definite YES or a definite NO, only then the statement(s) will be sufficient.

If the answer is: Maybe a+b is divisible by 7, then the statements become INSUFFICIENT.

In this case: a+b is definitely NOT divisible by 7. No matter what value you associate a or b with.

1. a is not divisible by 7.
a=5
b=2
a+b is divisible by 7.
****************
a=5
b=3
a+b is NOT divisible by 7.

Thus, NOT SUFFICIENT.

2. a-b is divisible by 7.
a=14
b=7
a+b=21 is divisible by 7.
a=9
b=2
a+b=11 is NOT divisible by 7.

Thus, NOT SUFFICIENT.

Together:
a is NOT divisible by 7.
BUT a-b is divisible by 7.
Means, b is also NOT divisible by 7.

a=9
b=2
a-b=7; divisible by 7.
But, a+b=11; NOT divisible by 7.

You can as many examples as you want that satisfy both statements and you will find that a+b is never divisible by 7.

a=23
b=2
a-b=21; divisible by 7.
a+b=25; NOT divisible by 7.

Thus, answer is "C"
*****************************************
You can try this with other examples but you will never find a value for a or b, such that, a+b is divisible by 7. Just make sure that you don't violate any condition stated in the stem, statement 1 or statement 2.
*************************************
User avatar
IanStewart
User avatar
GMAT Tutor
Joined: 24 Jun 2008
Last visit: 18 Nov 2025
Posts: 4,145
Own Kudos:
Given Kudos: 99
Expert
Expert reply
Posts: 4,145
Kudos: 10,987
Kudos
Add Kudos
Bookmarks
Bookmark this Post
If a+b and a-b are *both* multiples of 7, then their sum must be a multiple of 7 (if you add two multiples of 7, you always get a multiple of 7), so if both are multiples of 7, then so is a+b+a-b = 2a, and a would thus also be a multiple of 7. We know from Statement 1 that's not true, so it's impossible for a+b and a-b to both be multiples of 7. Thus with both Statements we know a+b is *not* a multiple of 7 and the answer must be 'no', so the answer is C.

I'd add that I see far too many prep company questions where you have sufficient information to give a 'no' answer to the question. Such questions are exceedingly rare on the actual GMAT - there's only one such question in the two official guides combined (OG12 and Quant Review).
User avatar
Spidy001
Joined: 01 Feb 2011
Last visit: 16 Feb 2015
Posts: 298
Own Kudos:
Given Kudos: 42
Posts: 298
Kudos: 348
Kudos
Add Kudos
Bookmarks
Bookmark this Post
1. Not sufficient
a is not divisible by 7

a b a+b divisible by 7
13 1 yes
13 2 no

2. Not sufficient

a-b is divisible by 7

a b a+b divisible by 7
14 7 yes
15 1 no

together

we have a-b is divisible by 7 and a is not divisible by 7
=> b is also not divisible by 7


a b a+b is divisible by 7
15 1 no
22 15 no

Sufficient to answer .

Answer is C.

answer is C.
User avatar
386390
Joined: 08 Sep 2010
Last visit: 09 Nov 2011
Posts: 29
Own Kudos:
Given Kudos: 4
Posts: 29
Kudos: 85
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Thanks for confirming Fluke and Ian.

@ IanStewart

I think that's what put me off. I was by default looking for sufficient YES answer. Whereas this one deals with a definitive NO. But thanks for highlighting that. At least now this will sit in the back of my head.
User avatar
alphastrike
Joined: 01 Jun 2010
Last visit: 16 Jul 2012
Posts: 22
Own Kudos:
Given Kudos: 9
Location: United States
Schools: Harvard Business School (HBS) - Class of 2014
GMAT 1: 730 Q47 V44
GPA: 3.53
Schools: Harvard Business School (HBS) - Class of 2014
GMAT 1: 730 Q47 V44
Posts: 22
Kudos: 19
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Math masters:

I have a quick question on MGMAT Number Properties Chapter 10 Question 10.

Are the sum of integers a and b divisible by 7?

1) a is not divisible by 7
2) a-b is divisible by 7

So...I can get the right answer, but in the explanation I saw somethign that got me thinking about the answer if the question had used the number "6" instead of "7"

"1 and 2 combined tell us that a is not divisible by 7, but a-b is divisible by 7. This tells us a and b have the same remainder when divided by 7: if a-b is divisible by 7, then the remainder of a-b is zero. Therefore, the remainders of a and b must be equal"

The answer to the original question is no. But if the if the target # is 6, is the answer appears to be yes. It seems that the answer is yes for any even # and no for any odd #. Confirm?
User avatar
IanStewart
User avatar
GMAT Tutor
Joined: 24 Jun 2008
Last visit: 18 Nov 2025
Posts: 4,145
Own Kudos:
Given Kudos: 99
Expert
Expert reply
Posts: 4,145
Kudos: 10,987
Kudos
Add Kudos
Bookmarks
Bookmark this Post
alphastrike
Math masters:

I have a quick question on MGMAT Number Properties Chapter 10 Question 10.

Are the sum of integers a and b divisible by 7?

1) a is not divisible by 7
2) a-b is divisible by 7

So...I can get the right answer, but in the explanation I saw somethign that got me thinking about the answer if the question had used the number "6" instead of "7"

"1 and 2 combined tell us that a is not divisible by 7, but a-b is divisible by 7. This tells us a and b have the same remainder when divided by 7: if a-b is divisible by 7, then the remainder of a-b is zero. Therefore, the remainders of a and b must be equal"

The answer to the original question is no. But if the if the target # is 6, is the answer appears to be yes. It seems that the answer is yes for any even # and no for any odd #. Confirm?

If you replace '7' everywhere in the question with '6', or with any other even number greater than 2, the answer would not be 'yes' using both Statements - it would sometimes be 'yes' and sometimes 'no', so the answer to the question would be E. So if we had this question:

Is the sum of positive integers a and b divisible by 6?
1) a is not divisible by 6
2) a-b is divisible by 6


then using both Statements it might be that a = 7 and b = 1, in which case the answer to the question is 'no', or it might be that a = 9 and b = 3, in which case the answer to the question is 'yes'.
User avatar
walker
Joined: 17 Nov 2007
Last visit: 25 May 2025
Posts: 2,398
Own Kudos:
Given Kudos: 362
Concentration: Entrepreneurship, Other
Schools: Chicago (Booth) - Class of 2011
GMAT 1: 750 Q50 V40
Expert
Expert reply
Schools: Chicago (Booth) - Class of 2011
GMAT 1: 750 Q50 V40
Posts: 2,398
Kudos: 10,717
Kudos
Add Kudos
Bookmarks
Bookmark this Post
It's C:

1) a+b is divisible by 7 for a=1, b=6 and is not divisible by 7 for a=1, b=5. Insufficient
2) a+b is divisible by 7 for a=7, b=7 and is not divisible by 7 for a=6, b=6. Insufficient
1&2) from 2 we know that a and b has the same remainder. from 1 we know that the remainder can be {1...6}
if a = 7n+r and b=7m+r then

a + b = 7n+r + 7m + r = 7(n+m) + 2r

2r = {1..6}*2 = {2,4,6,8,10,12} - none of the possible remainders is divisible by 7, so a+b is not divisible by 7. Sufficient
User avatar
narangvaibhav
Joined: 30 Jun 2011
Last visit: 17 Aug 2012
Posts: 98
Own Kudos:
Given Kudos: 12
Affiliations: Project Management Professional (PMP)
Location: New Delhi, India
Concentration: Marketing
Posts: 98
Kudos: 160
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
mirzohidjon
Is the sum of integers a and b divisible by 7?

1) a is not divisible by 7
2) a-b is divisible by 7

It has explanation in MGMAT test, but it is quite vague, and difficult to understand for me.
Please, elaborate...

(1) \(a=7p+r\) --> know nothing about b. Not sufficient.
(2) \(a-b=7q\) --> \(a+b=?\) --> Nor sufficient

(1)+(2) \(a=7p+r\) and \(a-b=7q\) --> \(b=a-7q\).

\(a+b=(7p+r)+(a-7q)=7p+r+7p+r-7q=7(2p-q)+2r\) --> \(7(2p-q)\) is divisible by 7. Since \(r\) is remainder from a being divided by 7, \(r\) and thus \(2r\) is not divisible by 7. So, \(a+b=7(2p-q)+2r\) is not divisible by 7. Sufficient.

Answer: C.
Thanks Bunuel... great explanation.. really helps
User avatar
321kumarsushant
Joined: 01 Nov 2010
Last visit: 19 Jun 2015
Posts: 138
Own Kudos:
Given Kudos: 44
Location: India
Concentration: Technology, Marketing
GMAT Date: 08-27-2012
GPA: 3.8
WE:Marketing (Manufacturing)
Posts: 138
Kudos: 172
Kudos
Add Kudos
Bookmarks
Bookmark this Post
VeritasPrepKarishma
alphastrike
Math masters:

I have a quick question on MGMAT Number Properties Chapter 10 Question 10.

Are the sum of integers a and b divisible by 7?

1) a is not divisible by 7
2) a-b is divisible by 7

So...I can get the right answer, but in the explanation I saw somethign that got me thinking about the answer if the question had used the number "6" instead of "7"

"1 and 2 combined tell us that a is not divisible by 7, but a-b is divisible by 7. This tells us a and b have the same remainder when divided by 7: if a-b is divisible by 7, then the remainder of a-b is zero. Therefore, the remainders of a and b must be equal"

The answer to the original question is no. But if the if the target # is 6, is the answer appears to be yes. It seems that the answer is yes for any even # and no for any odd #. Confirm?

Here is the logical explanation to the different answers (C and E) in the two cases (7 and 6).
First, let me explain why the answer is (C) in the original question.

Are the sum of integers a and b divisible by 7?

1) a is not divisible by 7
So a is of one of the following formats: 7n+1, 7n+2, 7n+3, 7n+4, 7n+5 and 7n+6

2) a-b is divisible by 7
The format of b is the same as the format of a i.e. if a = 7n + 3, then b = 7m + 3 since a and b vary by a multiple of 7
e.g. if a = 43 (= 7*6+1), then b could be 22 (= 7*3 + 1). The difference between them has to be a multiple of 7 so the remainder obtained by dividing a by 7 will be the same as the remainder obtained by dividing b by 7.

Using both statements, when you sum a and b, you get,
a+b = 7n+1 + 7m+1 = 7(n+m) + 2
or
a+b = 7n+2 + 7m+2 = 7(n+m) + 4
or
a+b = 7n+3 + 7m+3 = 7(n+m) + 6
etc
I hope you see that the remainder will be some even number (either 2 or 4 or 6 or 8 or 10 or 12). The remainder will never be 7 so the sum will never be a multiple of 7.

What happens if we replace 7 by 6?
Same logic.
a+b = 6n+1 + 6m+1 = 6(n+m) + 2
or
a+b = 6n+2 + 6m+2 = 6(n+m) + 4
or
a+b = 6n+3 + 6m+3 = 6(n+m) + 6
Let me stop here. Did you see something interesting? The remainder in the last case is 6 which means a+b is divisible by 6. In some cases, a+b will not be divisible by 6 and in some cases, it will be.
Hence your answer will be (E).


Karishma, can you please check your answer since OA is C not E.
and i am also getting C as answer.
avatar
sub3108
Joined: 01 Mar 2012
Last visit: 30 Mar 2015
Posts: 12
Own Kudos:
Given Kudos: 46
Concentration: Operations, Finance
GMAT 1: 740 Q49 V41
GPA: 3.3
WE:Engineering (Manufacturing)
GMAT 1: 740 Q49 V41
Posts: 12
Kudos: 6
Kudos
Add Kudos
Bookmarks
Bookmark this Post
alphastrike
Math masters:

I have a quick question on MGMAT Number Properties Chapter 10 Question 10.

Are the sum of integers a and b divisible by 7?

1) a is not divisible by 7
2) a-b is divisible by 7

So...I can get the right answer, but in the explanation I saw somethign that got me thinking about the answer if the question had used the number "6" instead of "7"

"1 and 2 combined tell us that a is not divisible by 7, but a-b is divisible by 7. This tells us a and b have the same remainder when divided by 7: if a-b is divisible by 7, then the remainder of a-b is zero. Therefore, the remainders of a and b must be equal"

The answer to the original question is no. But if the if the target # is 6, is the answer appears to be yes. It seems that the answer is yes for any even # and no for any odd #. Confirm?

Alphastrike you've pointed out something very interesting.
The reason is- AS THE SUM OF THE TWO REMAINDERS WHICH ARE EQUAL CAN'T BE AN ODD NUMBER, HENCE FOR ALL ODD NUMBERS THE ANSWER IS NO.
IT FOLLOWS LOGICALLY THAT FOR EVEN NUMBER i.e 6, IT MAY BE YES OR MAY BE NO.
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 18 Nov 2025
Posts: 16,267
Own Kudos:
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 76,994
Kudos
Add Kudos
Bookmarks
Bookmark this Post
321kumarsushant

Here is the logical explanation to the different answers (C and E) in the two cases (7 and 6).
[highlight]First, let me explain why the answer is (C) in the original question.[/highlight]

Are the sum of integers a and b divisible by 7?

1) a is not divisible by 7
So a is of one of the following formats: 7n+1, 7n+2, 7n+3, 7n+4, 7n+5 and 7n+6

2) a-b is divisible by 7
The format of b is the same as the format of a i.e. if a = 7n + 3, then b = 7m + 3 since a and b vary by a multiple of 7
e.g. if a = 43 (= 7*6+1), then b could be 22 (= 7*3 + 1). The difference between them has to be a multiple of 7 so the remainder obtained by dividing a by 7 will be the same as the remainder obtained by dividing b by 7.

Using both statements, when you sum a and b, you get,
a+b = 7n+1 + 7m+1 = 7(n+m) + 2
or
a+b = 7n+2 + 7m+2 = 7(n+m) + 4
or
a+b = 7n+3 + 7m+3 = 7(n+m) + 6
etc
I hope you see that the remainder will be some even number (either 2 or 4 or 6 or 8 or 10 or 12). The remainder will never be 7 so the sum will never be a multiple of 7.

[highlight]What happens if we replace 7 by 6?[/highlight]
Same logic.
a+b = 6n+1 + 6m+1 = 6(n+m) + 2
or
a+b = 6n+2 + 6m+2 = 6(n+m) + 4
or
a+b = 6n+3 + 6m+3 = 6(n+m) + 6
Let me stop here. Did you see something interesting? The remainder in the last case is 6 which means a+b is divisible by 6. In some cases, a+b will not be divisible by 6 and in some cases, it will be.
[highlight]Hence your answer will be (E).[/highlight]


Karishma, can you please check your answer since OA is C not E.
and i am also getting C as answer.

Please note that the answer to the original question is (C) as highlighted above. Later, I changed the question (6 in place of 7) and that's when you get the answer (E).
User avatar
GMATBusters
User avatar
GMAT Tutor
Joined: 27 Oct 2017
Last visit: 14 Nov 2025
Posts: 1,924
Own Kudos:
Given Kudos: 241
WE:General Management (Education)
Expert
Expert reply
Posts: 1,924
Kudos: 6,647
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Is the sum of integers a and b divisible by 7?

(1) a is not divisible by 7

No info about b. Not Sufficient.

(2) a-b is divisible by 7

We can't say anything about a+b.

Eg: 8-1 is divisible by 7 but 8+1 is NOT divisible by 7

Combining St1 and St2 :
Let's assume that a+b is divisible by 7

a+b = 7m ....(i) Assumption
a-b =7n ...(ii) St2

Adding, we get 2a = 7 (m+n)
or a is divisible by 7.

However, it is contradictory to Statement 1. Hence, our assumption that a+b is divisible by 7 is INCORRECT.

so, a+b is NOT divisible by 7

Answer C.
gmatjon
Is the sum of integers a and b divisible by 7?

(1) a is not divisible by 7
(2) a-b is divisible by 7
­
Moderators:
Math Expert
105389 posts
496 posts