GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 22 Feb 2019, 04:28

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

## Events & Promotions

###### Events & Promotions in February
PrevNext
SuMoTuWeThFrSa
272829303112
3456789
10111213141516
17181920212223
242526272812
Open Detailed Calendar
• ### Free GMAT RC Webinar

February 23, 2019

February 23, 2019

07:00 AM PST

09:00 AM PST

Learn reading strategies that can help even non-voracious reader to master GMAT RC. Saturday, February 23rd at 7 AM PT
• ### FREE Quant Workshop by e-GMAT!

February 24, 2019

February 24, 2019

07:00 AM PST

09:00 AM PST

Get personalized insights on how to achieve your Target Quant Score.

# Is x^2 greater than x ?

Author Message
TAGS:

### Hide Tags

Board of Directors
Joined: 01 Sep 2010
Posts: 3352
Is x^2 greater than x ?  [#permalink]

### Show Tags

13 Feb 2013, 15:45
2
3
00:00

Difficulty:

45% (medium)

Question Stats:

66% (01:12) correct 34% (00:59) wrong based on 148 sessions

### HideShow timer Statistics

Is x^2 greater than x ?

(1) x is less than -1.

(2) x^2 is greater than 1.

_________________
Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 8893
Location: Pune, India
Re: Is x^2 greater than x ?  [#permalink]

### Show Tags

13 Feb 2013, 20:21
4
1
carcass wrote:
Is $$x^2$$ greater than x ?

(1) $$x$$ is less than -1.

(2) $$x^2$$ is greater than 1.

For 700+ level questions, you should know these properties of numbers very well:

When is x^2 > x?
For all negative values of x (since the square will be positive) or whenever x > 1 (Square will be more than the number).

When is x^2 < x?
When 0 < x < 1

When is x^3 > x?
When x > 1 or -1 < x < 0

When is x^3 < x?
When 0 < x < 1 or x < -1

Draw them on the number line and mark the corresponding regions. Take examples from each region to convince yourself why the squares and cubes behave this way. Then, memorize both the diagrams!

Coming back to this question:
(1) $$x$$ is less than -1.
For negative numbers, x^2 is more than x. So answer is 'Yes'. Sufficient.

(2) $$x^2$$ is greater than 1
implies mod x is greater than 1 or we can say, x is greater than 1 or less than -1. In either case, x^2 is greater than x. So answer is 'Yes'. Sufficient.

_________________

Karishma
Veritas Prep GMAT Instructor

##### General Discussion
Retired Moderator
Joined: 16 Nov 2010
Posts: 1407
Location: United States (IN)
Concentration: Strategy, Technology
Re: Is x^2 greater than x ?  [#permalink]

### Show Tags

13 Feb 2013, 17:14
1
1) x < -1 means that x^2 > x , e.g. -2, -1.5 are all positive so x^2 > x, sufficient

2) x^2 > 1 means that |x| > 1, so if x is either say -1.5 or 1.5, then x^2 > x, sufficient.

_________________

Formula of Life -> Achievement/Potential = k * Happiness (where k is a constant)

GMAT Club Premium Membership - big benefits and savings

Board of Directors
Joined: 01 Sep 2010
Posts: 3352
Re: Is x^2 greater than x ?  [#permalink]

### Show Tags

14 Feb 2013, 03:54
VeritasPrepKarishma wrote:
carcass wrote:
Is $$x^2$$ greater than x ?

(1) $$x$$ is less than -1.

(2) $$x^2$$ is greater than 1.

For 700+ level questions, you should know these properties of numbers very well:

When is x^2 > x?
For all negative values of x (since the square will be positive) or whenever x > 1 (Square will be more than the number).

When is x^2 < x?
When 0 < x < 1

When is x^3 > x?
When x > 1 or -1 < x < 0

When is x^3 < x?
When 0 < x < 1 or x < -1

Draw them on the number line and mark the corresponding regions. Take examples from each region to convince yourself why the squares and cubes behave this way. Then, memorize both the diagrams!

Coming back to this question:
(1) $$x$$ is less than -1.
For negative numbers, x^2 is more than x. So answer is 'Yes'. Sufficient.

(2) $$x^2$$ is greater than 1
implies mod x is greater than 1 or we can say, x is greater than 1 or less than -1. In either case, x^2 is greater than x. So answer is 'Yes'. Sufficient.

Thanks Karishma I know: I 'm working to memorize these rules and tackle the question with more proficiency.

Infact at the moment I 'm quite comfortable with this question but I'm working on how attack a question from an odd angle i.e. trying different strategy.

This is why I posted here this question. Please see if I did correct

$$x^2 > x$$ or $$x^2 - x > 0$$

This imply that $$x < 0$$ and $$x > 1$$

1) $$x < - 1$$ suff

2) $$x^2 > 1$$ basically says $$x > 1$$ suff

In less than 50 seconds. Is fine or I'm wrong ??

Thanks a lot
_________________
Math Expert
Joined: 02 Sep 2009
Posts: 53066
Re: Is x^2 greater than x ?  [#permalink]

### Show Tags

14 Feb 2013, 04:11
1
carcass wrote:
VeritasPrepKarishma wrote:
carcass wrote:
Is $$x^2$$ greater than x ?

(1) $$x$$ is less than -1.

(2) $$x^2$$ is greater than 1.

For 700+ level questions, you should know these properties of numbers very well:

When is x^2 > x?
For all negative values of x (since the square will be positive) or whenever x > 1 (Square will be more than the number).

When is x^2 < x?
When 0 < x < 1

When is x^3 > x?
When x > 1 or -1 < x < 0

When is x^3 < x?
When 0 < x < 1 or x < -1

Draw them on the number line and mark the corresponding regions. Take examples from each region to convince yourself why the squares and cubes behave this way. Then, memorize both the diagrams!

Coming back to this question:
(1) $$x$$ is less than -1.
For negative numbers, x^2 is more than x. So answer is 'Yes'. Sufficient.

(2) $$x^2$$ is greater than 1
implies mod x is greater than 1 or we can say, x is greater than 1 or less than -1. In either case, x^2 is greater than x. So answer is 'Yes'. Sufficient.

Thanks Karishma I know: I 'm working to memorize these rules and tackle the question with more proficiency.

Infact at the moment I 'm quite comfortable with this question but I'm working on how attack a question from an odd angle i.e. trying different strategy.

This is why I posted here this question. Please see if I did correct

$$x^2 > x$$ or $$x^2 - x > 0$$

This imply that $$x < 0$$ and $$x > 1$$

1) $$x < - 1$$ suff

2) $$x^2 > 1$$ basically says $$x > 1$$ suff

In less than 50 seconds. Is fine or I'm wrong ??

Thanks a lot

Everything is correct except the red part above.

Is x^2 greater than x ?

Is $$x^2 > x$$? --> is $$x(x-1)>0$$? Is $$x<0$$ or $$x>1$$? So, as Karishma correctly noted above $$x^2>x$$ hods true for all negative values of x as well as for values of x which are more than 1.

(1) x is less than -1. If x is negative, then $$x^2=positive>x=negative$$. Sufficient.

(2) x^2 is greater than 1 --> $$x^2>1$$ --> $$|x|>1$$ --> $$x<-1$$ or $$x>1$$ --> for both case $$x^2>x$$. Sufficient.

_________________
Board of Directors
Joined: 01 Sep 2010
Posts: 3352
Re: Is x^2 greater than x ?  [#permalink]

### Show Tags

14 Feb 2013, 05:21
Quote:

Everything is correct except the red part above.

Is x^2 greater than x ?

Is $$x^2 > x$$? --> is $$x(x-1)>0$$? Is $$x<0$$ or $$x>1$$? So, as Karishma correctly noted above $$x^2>x$$, for all negative value of x as well as for values of x which are more than 1.

(1) x is less than -1. If x is negative, then $$x^2=positive>x=negative$$. Sufficient.

(2) x^2 is greater than 1 --> $$x^2>1$$ --> $$|x|>1$$ --> $$x<-1$$ or $$x>1$$ --> for both case $$x^2>x$$. Sufficient.

grrrrrrrrrrrrrrrrrrrrrrr always this silly stupid dumb mistake : I'm not so far from a good score ( $$>=48$$ )

and always if you do not know the sign of x you can't square both sides, simply.

thanks both of you
_________________
Board of Directors
Joined: 17 Jul 2014
Posts: 2587
Location: United States (IL)
Concentration: Finance, Economics
GMAT 1: 650 Q49 V30
GPA: 3.92
WE: General Management (Transportation)
Is x^2 greater than x ?  [#permalink]

### Show Tags

01 Jun 2017, 14:48
carcass wrote:
Is x^2 greater than x ?

(1) x is less than -1.

(2) x^2 is greater than 1.

to answer this question, we need to know whether:
x<0
or x>1.
if 0<x<1, x^2 will be less than x.

1. sufficient.
2. it means that |x|>1, sufficient.
Intern
Joined: 03 Sep 2018
Posts: 49
Is x^2 greater than x ?  [#permalink]

### Show Tags

05 Feb 2019, 01:44
carcass wrote:
Is $$x^2$$ greater than x ?

(1) $$x$$ is less than -1.

(2) $$x^2$$ is greater than 1.

For 700+ level questions, you should know these properties of numbers very well:

When is x^2 > x?
For all negative values of x (since the square will be positive) or whenever x > 1 (Square will be more than the number).

When is x^2 < x?
When 0 < x < 1

When is x^3 > x?
When x > 1 or -1 < x < 0

When is x^3 < x?
When 0 < x < 1 or x < -1

Draw them on the number line and mark the corresponding regions. Take examples from each region to convince yourself why the squares and cubes behave this way. Then, memorize both the diagrams!

Coming back to this question:
(1) $$x$$ is less than -1.
For negative numbers, x^2 is more than x. So answer is 'Yes'. Sufficient.

(2) $$x^2$$ is greater than 1
implies mod x is greater than 1 or we can say, x is greater than 1 or less than -1. In either case, x^2 is greater than x. So answer is 'Yes'. Sufficient.

Is it not the case that
$$x<x^3 \implies$$ $$-1<x<0$$ OR $$1<x$$ ?

And is it not also the case that

$$x^3<x \implies x<-1$$ OR $$0<x<1$$?
_________________

Is x^2 greater than x ?   [#permalink] 05 Feb 2019, 01:44
Display posts from previous: Sort by