Author 
Message 
TAGS:

Hide Tags

Manager
Joined: 03 Feb 2010
Posts: 61

Is x^4 + y^4 > z^4?
[#permalink]
Show Tags
Updated on: 03 Jul 2013, 01:32
Question Stats:
45% (01:30) correct 55% (01:23) wrong based on 752 sessions
HideShow timer Statistics
Is x^4 + y^4 > z^4? (1) x^2 + y^2 > z^2 (2) x + y > z
Official Answer and Stats are available only to registered users. Register/ Login.
Originally posted by ksharma12 on 19 Sep 2010, 23:51.
Last edited by Bunuel on 03 Jul 2013, 01:32, edited 2 times in total.
Added the OA.




Math Expert
Joined: 02 Sep 2009
Posts: 49271

Re: Gmat Prep exponent
[#permalink]
Show Tags
20 Sep 2010, 00:03
Is \(x^4+y^4>z^4\)? The best way to deal with this problem is plugging numbers. Remember on DS questions when plugging numbers, goal is to prove that the statement is not sufficient. So we should try to get a YES answer with one chosen number(s) and a NO with another. (1) \(x^2+y^2>z^2\) It's clear that we get YES answer very easily with big x and y (say 10 and 10), and small z (say 0). For NO answer let's try numbers from Pythagorean triples: \(x^2=3\), \(y^2=4\) and \(z^2=5\) (\(x^2+y^2=7>5=z^2\)) > \(x^4+y^4=9+16=25=z^4\), so we have answer NO (\(x^4+y^4\) is NOT more than \(z^4\), it's equal to it). Not sufficient. (2) \(x+y>z\). This one is even easier: again we can get YES answer with big x and y, and small z. As for NO try to make z some big enough negative number: so if \(x=y=1\) and \(z=5\), then \(x^4+y^4=1+1=2<25=z^4\). Not sufficient. (1)+(2) As we concluded YES answer is easily achievable. For NO try the case of \(x^2=3\), \(y^2=4\) and \(z^2=5\) again: \(x+y=\sqrt{3}+\sqrt{4}>\sqrt{5}\) (\(\sqrt{3}+2\) is more than 3 and \(\sqrt{5}\) is less than 3), so statement (2) is satisfied, we know that statement (1) is also satisfied (\(x^2+y^2=7>5=z^2\)) and \(x^4+y^4=9+16=25=z^4\). Not sufficient. Answer: E. Hope it's clear.
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics




Manager
Joined: 04 Aug 2010
Posts: 114

Re: Gmat Prep exponent
[#permalink]
Show Tags
20 Sep 2010, 19:23
Thanks for the explanation. I keep forgetting the unknowns could be negative numbers.



Retired Moderator
Joined: 02 Sep 2010
Posts: 772
Location: London

Re: Gmat Prep exponent
[#permalink]
Show Tags
10 Oct 2010, 03:39
utin wrote: Hi Bunuel,
Can it be done using algebra??? Yes ! and it is fairly simple as well ... (1) \(x^2+y^2>z^2\) Both sides are positive, so we can square them up \(x^4+y^4+2x^2y^2>z^4\) For statement to be true or false, we need to know the magnitude of \(2x^2y^2\). So insufficient (2) \(x+y>z\) Let me take the special case, x,y,z>0. If we cannot answer for that case, we can certainly not answer in general. Now simply take both sides to the fourth power : \(x^4+y^4+4x^3y+6x^2y^2+4xy^3>z^4\) Again unless we know the extra terms, we cannot say for sure. So insufficient (1+2) Again consider the special case for positive numbers only. Even then we don't have enough information to say anything. Do the same manipulation as above and it is easy to see that inequality two has the same terms on the LHS as inequality 1 and some extra terms on top. So clearly its enough to look at 1, which we know is not sufficient to give us an answer, so insufficient Answer is (e)
_________________
Math writeups 1) Algebra101 2) Sequences 3) Set combinatorics 4) 3D geometry
My GMAT story
GMAT Club Premium Membership  big benefits and savings



Math Expert
Joined: 02 Sep 2009
Posts: 49271

Re: Gmat Prep exponent
[#permalink]
Show Tags
10 Oct 2010, 04:45
utin wrote: Hi Bunuel,
Can it be done using algebra??? Great question. Yes you can use algebra, but as shown by shrouded1 above you'd better not. Below is great note from ManhattanGMAT tutor Ron Purewal about this problem: "this problem should serve as a nice wakeup call to any and all students who don't like "plugin methods", or who abjure such methods so that they can keep searching ... and searching ... and searching for the elusive "textbook" method. this problem is pretty much ONLY soluble with plugin methods. therefore, you MUST make plugin methods part of your arsenal if you want a fighting chance at all quant problems you'll see. this is the case for a great many difficult inequality problems, by the way: the most difficult among those problems will often require some sort of plugins, or, at the very least, they will be hell on earth if you try to use theory."
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 8281
Location: Pune, India

Re: Is x^4 + y^4 > z^4?
[#permalink]
Show Tags
04 Dec 2010, 19:59
gmatbull wrote: Is x^4 + y^4 > z^4?
(1) x^2 + y^2 > z^2 (2) x + y > z
What do you think is the fastest approach to solving this question? This is the approach I used. It isn't algebraic and it isn't completely based on plugging numbers either (though I am explaining using plugs). It seemed intuitive to me, but your opinion could be different. Stmnt 1: \(x^2 + y^2 > z^2\) I do not like \(x^4 + y^4 > z^4\), powers of 4 since I do not know how to work with them in multiple ways. I prefer squares. So I look at the question in this way: Stmnt 1: X + Y > Z (X, Y and Z are all positive) Is \(X^2 + Y^2 > Z^2\)? Now it is intuitive to say "Yes, it is." because if X = 8, Y = 9 and Z = 1, it is. The problem is, is there a case in which I would answer "No". \(X^2 + Y^2 > Z^2\) reminds me of pythagorean triplets where \(X^2 + Y^2 = Z^2\). I check the easiest one 3, 4, 5. I get "No". Hence this is not sufficient. The toughest part of the question is over. Stmnt 2: x + y > z Again, intuitive to say "Yes" because if X = 8, Y = 9 and Z = 1, the answer is yes. And very easy to say "No" because if x = root(3), y = root(4) and z = root(5), x^4 + y^4 is not greater than z^4 We have used the same examples in both the cases to get a "Yes" and a "No" hence using both together, we will not get the answer. Answer (E).
_________________
Karishma Veritas Prep GMAT Instructor
Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >
GMAT selfstudy has never been more personalized or more fun. Try ORION Free!



CEO
Joined: 17 Nov 2007
Posts: 3481
Concentration: Entrepreneurship, Other
Schools: Chicago (Booth)  Class of 2011

Re: Gmat Prep exponent
[#permalink]
Show Tags
04 Dec 2010, 20:31
Nice question. Here is my reasoning that allowed me to solve the problem pretty fast. The inequity true for X=Y=Z=1 > 1+1>1 Now, let's increase Z (X=Y=1). Z^2 will grow faster than Z but slower than Z^4. So, at some point Z^4 will be greater than 2 but Z^2 and Z will be lesser than 2 and still both conditions will be satisfied. So E.
_________________
HOT! GMAT TOOLKIT 2 (iOS) / GMAT TOOLKIT (Android)  The OFFICIAL GMAT CLUB PREP APP, a musthave app especially if you aim at 700+  Limited GMAT/GRE Math tutoring in Chicago



Manager
Joined: 19 Dec 2010
Posts: 110

Re: Gmat Prep exponent
[#permalink]
Show Tags
17 Mar 2011, 23:17
i worked only with positives on this one. Plug and chug approach... Stmnt 1: x^2 + y^2 > z^2 plug in 1 for each, you will see that the statement holds. if you plug in 2 for x and y...3 for z the statement falls apart Same logic for statement 2 Answer: E



Retired Moderator
Status: 2000 posts! I don't know whether I should feel great or sad about it! LOL
Joined: 04 Oct 2009
Posts: 1320
Location: Peru
Schools: Harvard, Stanford, Wharton, MIT & HKS (Government)
WE 1: Economic research
WE 2: Banking
WE 3: Government: Foreign Trade and SMEs

Re: Gmat Prep exponent
[#permalink]
Show Tags
27 Jan 2012, 11:26
shrouded1 wrote: utin wrote: Hi Bunuel,
Can it be done using algebra??? Yes ! and it is fairly simple as well ... (1) \(x^2+y^2>z^2\) Both sides are positive, so we can square them up \(x^4+y^4+2x^2y^2>z^4\) For statement to be true or false, we need to know the magnitude of \(2x^2y^2\). So insufficient (2) \(x+y>z\) Let me take the special case, x,y,z>0. If we cannot answer for that case, we can certainly not answer in general. Now simply take both sides to the fourth power : \(x^4+y^4+4x^3y+6x^2y^2+4xy^3>z^4\) Again unless we know the extra terms, we cannot say for sure. So insufficient (1+2) Again consider the special case for positive numbers only. Even then we don't have enough information to say anything. Do the same manipulation as above and it is easy to see that inequality two has the same terms on the LHS as inequality 1 and some extra terms on top. So clearly its enough to look at 1, which we know is not sufficient to give us an answer, so insufficient Answer is (e)I have doubts about this method. In statement 1, although we don't know the mangnitude of \(2x^2y^2\), we know that this expression cannot take any arbitrary value; its value depends on the values of \(x^2\) and \(y^2\). I have picked different numbers, and I have not found a combination in which \(z^4\) is less than \(x^4+y^4+2x^2y^2\). What do you think? I solved the question, picking numbers directly. It is a 700+ question, isn't it?
_________________
"Life’s battle doesn’t always go to stronger or faster men; but sooner or later the man who wins is the one who thinks he can."
My Integrated Reasoning Logbook / Diary: http://gmatclub.com/forum/myirlogbookdiary133264.html
GMAT Club Premium Membership  big benefits and savings



Intern
Joined: 06 Jun 2012
Posts: 18

Re: Is x^4+y^4>z^4? (1) x^2+y^2>z^2 (2) x+y>z
[#permalink]
Show Tags
14 Jun 2012, 11:01
Damn i felt stupid when i saw this question. Should you have the knowledge to solve this kind of questions to hit a 700+ score, before starting your prep to gmat?



Math Expert
Joined: 02 Sep 2009
Posts: 49271

Re: Is x^4+y^4>z^4? (1) x^2+y^2>z^2 (2) x+y>z
[#permalink]
Show Tags
14 Jun 2012, 11:41



Manager
Joined: 12 Feb 2012
Posts: 125

Re: Gmat Prep exponent
[#permalink]
Show Tags
19 Aug 2012, 17:55
shrouded1 wrote: utin wrote: Hi Bunuel,
Can it be done using algebra??? Yes ! and it is fairly simple as well ... (1) \(x^2+y^2>z^2\) Both sides are positive, so we can square them up \(x^4+y^4+2x^2y^2>z^4\) For statement to be true or false, we need to know the magnitude of \(2x^2y^2\). So insufficient (2) \(x+y>z\) Let me take the special case, x,y,z>0. If we cannot answer for that case, we can certainly not answer in general. Now simply take both sides to the fourth power : \(x^4+y^4+4x^3y+6x^2y^2+4xy^3>z^4\) Again unless we know the extra terms, we cannot say for sure. So insufficient (1+2) Again consider the special case for positive numbers only. Even then we don't have enough information to say anything. Do the same manipulation as above and it is easy to see that inequality two has the same terms on the LHS as inequality 1 and some extra terms on top. So clearly its enough to look at 1, which we know is not sufficient to give us an answer, so insufficient Answer is (e)Having a problem in statement (1) (1) \(x^2+y^2>z^2\) Both sides are positive, so we can square them up \(x^4+y^4+2x^2y^2>z^4\) \(2x^2y^2>=0\). so why isnt this sufficient? If \(2x^2y^2>=0\) then either X or Y equals 0 (but not both!). which implies that if x=0, \(y^2>z^2\) ===> \(y^4>z^4\) or y=0 \(x^2>z^2\) ===> \(x^4>z^4\) , in both cases sufficient. What I am doing wrong? What am I not considering?



Intern
Joined: 07 Apr 2012
Posts: 11
Location: United States
Concentration: Finance, Economics

Re: Gmat Prep exponent
[#permalink]
Show Tags
19 Aug 2012, 19:45
alphabeta1234 wrote: shrouded1 wrote: utin wrote: Hi Bunuel,
Can it be done using algebra??? Yes ! and it is fairly simple as well ... (1) \(x^2+y^2>z^2\) Both sides are positive, so we can square them up \(x^4+y^4+2x^2y^2>z^4\) For statement to be true or false, we need to know the magnitude of \(2x^2y^2\). So insufficient (2) \(x+y>z\) Let me take the special case, x,y,z>0. If we cannot answer for that case, we can certainly not answer in general. Now simply take both sides to the fourth power : \(x^4+y^4+4x^3y+6x^2y^2+4xy^3>z^4\) Again unless we know the extra terms, we cannot say for sure. So insufficient (1+2) Again consider the special case for positive numbers only. Even then we don't have enough information to say anything. Do the same manipulation as above and it is easy to see that inequality two has the same terms on the LHS as inequality 1 and some extra terms on top. So clearly its enough to look at 1, which we know is not sufficient to give us an answer, so insufficient Answer is (e)Having a problem in statement (1) (1) \(x^2+y^2>z^2\) Both sides are positive, so we can square them up \(x^4+y^4+2x^2y^2>z^4\) \(2x^2y^2>=0\). so why isnt this sufficient? If \(2x^2y^2>=0\) then either X or Y equals 0 (but not both!). which implies that if x=0, \(y^2>z^2\) ===> \(y^4>z^4\) or y=0 \(x^2>z^2\) ===> \(x^4>z^4\) , in both cases sufficient. What I am doing wrong? What am I not considering? Hi there: You are right on those calculations, but one thing you seem to have neglect: 2x^2y^2>=0 (yes, and for sure), but do we really need to add this term for x^4+y^4>z^4 to be true, what if it means little to the equality, 1000>10, and 1000+1>10, but you could not logically conclude that just because 1>0 and thus 1000<10. I use a totally different approach for this question: it will be relatively easy to find a confirming result giving either statement, just use ridiculous numbers to prove, there is no need to compute, say x=1000 and y=1, and z=10. Therefore, what matters is that if we can find refuting evidence given those( or either statements), I have not actually computed those equations, but as you can recall from the number properties, a number 0<and <1 will decrease when the power increases. For statement 1, we just need to find if there are x^2<1 and Y^2<1, and Z^2>1 (and possible be very close to the left side so that we can find a countering example)..We surely can, for instance, if x=y=.9, and z=1.6. We know that squaring each term on the left side will decrease the value and squaring the right side will increase the value, so bingo, we found it, and S1 is thus insufficient. For statement 2, the pythagorean is the best approach IMO, 3,4,5 are so handy and could be easily validated or you can use my strategy to stay consistent. Combine those will still be insufficient. Hope that helps.



Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 8281
Location: Pune, India

Re: Gmat Prep exponent
[#permalink]
Show Tags
20 Aug 2012, 02:54
alphabeta1234 wrote: Having a problem in statement (1)
(1) \(x^2+y^2>z^2\) Both sides are positive, so we can square them up \(x^4+y^4+2x^2y^2>z^4\) \(2x^2y^2>=0\). so why isnt this sufficient?
If \(2x^2y^2>=0\) then either X or Y equals 0 (but not both!). which implies that if x=0, \(y^2>z^2\) ===> \(y^4>z^4\) or y=0 \(x^2>z^2\) ===> \(x^4>z^4\) , in both cases sufficient. What I am doing wrong? What am I not considering? Ok, say you know that a+b > c and that b is positive. Can you say that a is definitely greater than c? Given that \(x^4+y^4+2x^2y^2>z^4\) and you know that \(2x^2y^2\) is positive or 0, can you say that \(x^4+y^4>z^4\) ? Isn't it possible that \(2x^2y^2\) part of the left hand side is making the left hand side greater than the right hand side? Assume, \(x = \sqrt{3}\), \(y = 2\) and\(z = \sqrt{5}\) \(x^2+y^2>z^2\) but \(x^4+y^4=z^4\)
_________________
Karishma Veritas Prep GMAT Instructor
Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >
GMAT selfstudy has never been more personalized or more fun. Try ORION Free!



Intern
Joined: 18 Apr 2015
Posts: 5

Re: Is x^4 + y^4 > z^4?
[#permalink]
Show Tags
02 Aug 2015, 00:06
Brunuel: Is this reasoning right? Bcz we are given with the fact that statement 1 (condition) is true. Then why should we check its validity bringing in Pythagoras theorm.



Math Expert
Joined: 02 Sep 2009
Posts: 49271

Re: Is x^4 + y^4 > z^4?
[#permalink]
Show Tags
16 Aug 2015, 10:52



Intern
Joined: 04 May 2015
Posts: 25

Is x^4 + y^4 > z^4?
[#permalink]
Show Tags
13 Oct 2015, 11:00
Let x^4 = m^2 Let y^4 = p ^2 Let z^4 = n ^2
Hence the question is : m^2 + p^2 > n^2 When m^2 + p^2 = n^2 it`s a formula of a circle. And when m^2 + p^2 > n^2 we need the area outside the circle.
1) Draw a circle with radius z inside the first circle with radius n = z^2 . We are told about the area outside the second circle. But is it still inside the first circle or not ? N/A
2) This is just a plane with a multiple unknown parameters. We can vary z as we want. N/A
1) + 2) Adds nothing N/A
> E



Math Revolution GMAT Instructor
Joined: 16 Aug 2015
Posts: 6219
GPA: 3.82

Re: Is x^4 + y^4 > z^4?
[#permalink]
Show Tags
14 Oct 2015, 06:58
Forget conventional ways of solving math questions. In DS, Variable approach is the easiest and quickest way to find the answer without actually solving the problem. Remember equal number of variables and independent equations ensures a solution. Is x^4 + y^4 > z^4? (1) x^2 + y^2 > z^2 (2) x + y > z From the original condition, we get 3 variables (x,y,z), and in order to match the numbers, we need 3 equations. We are only given 2, so there is high chance (E) will be our answer. Looking at the conditions together, the answer to the question is ‘yes’ for x=y=z=1, but ‘no’ for x=y=0.6, z=0.8. So the conditions are insufficient, and the answer becomes (E). For cases where we need 3 more equation, such as original conditions with “3 variables”, or “4 variables and 1 equation”, or “5 variables and 2 equations”, we have 1 equation each in both 1) and 2). Therefore, there is 80% chance that E is the answer (especially about 90% of 2 by 2 questions where there are more than 3 variables), while C has 15% chance. These two are the majority. In case of common mistake type 3,4, the answer may be from A, B or D but there is only 5% chance. Since E is most likely to be the answer using 1) and 2) separately according to DS definition (It saves us time). Obviously there may be cases where the answer is A, B, C or D.
_________________
MathRevolution: Finish GMAT Quant Section with 10 minutes to spare The oneandonly World’s First Variable Approach for DS and IVY Approach for PS with ease, speed and accuracy. "Only $99 for 3 month Online Course" "Free Resources30 day online access & Diagnostic Test" "Unlimited Access to over 120 free video lessons  try it yourself"



Target Test Prep Representative
Status: Founder & CEO
Affiliations: Target Test Prep
Joined: 14 Oct 2015
Posts: 3517
Location: United States (CA)

Is x^4 + y^4 > z^4?
[#permalink]
Show Tags
Updated on: 03 Jan 2018, 07:08
ksharma12 wrote: Is x^4 + y^4 > z^4?
(1) x^2 + y^2 > z^2 (2) x + y > z We want to determine whether x^4 + y^4 > z^4. Statement One Alone:x^2 + y^2 > z^2 If we square both sides of the inequality, we will have: x^4 + 2(x^2)(y^2) + y^4 > z^4 x^4 + y^4 > z^4 – 2(x^2)(y^2) We still cannot determine whether x^4 + y^4 > z^4, since 2(x^2)(y^2) is a nonnegative quantity. For example, if x = 0, y = 2, and z = 1, then x^4 + y^4 > z^4, since 0^4 + 2^4 > 1^4. However, if x = 3, y = 3, and z = 4, then x^4 + y^4 is not greater than z^4, since 3^4 + 3^4 is not greater than 4^4. Statement one is not sufficient to answer the question. Statement Two Alone:x + y > z We cannot determine whether x^4 + y^4 is greater than z^4. For example, if x = 0, y = 2, and z = 1, then x^4 + y^4 > z^4, since 0^4 + 2^4 > 1^4. However, if x = 3, y = 3, and z = 4, then x^4 + y^4 is not greater than z^4, since 3^4 + 3^4 is not greater than 4^4. Statement two is not sufficient to answer the question. Statements One and Two Together:Using our two statements, we still cannot determine whether x^4 + y^4 is greater than z^4. Using the same numerical examples used earlier, we have: If x = 0, y = 2, and z = 1, then x^4 + y^4 > z^4. However, if x = 3, y = 3, and z = 4, then x^4 + y^4 is not greater than z^4. Answer: E
_________________
Scott WoodburyStewart
Founder and CEO
GMAT Quant SelfStudy Course
500+ lessons 3000+ practice problems 800+ HD solutions



EMPOWERgmat Instructor
Status: GMAT Assassin/CoFounder
Affiliations: EMPOWERgmat
Joined: 19 Dec 2014
Posts: 12415
Location: United States (CA)

Re: Is x^4 + y^4 > z^4?
[#permalink]
Show Tags
20 Dec 2017, 18:12
Hi All, This question can be solved by TESTing VALUES. When a DS prompt involves lots of exponents, it's likely that you'll have to consider values OTHER than positive integers though (including 0, negatives, fractions, etc.). We're asked if X^4 + Y^4 > Z^4. This is a YES/NO question. Since Fact 2 is easier to deal with than Fact 1, I'm going to start there (we might also be able to use our work on Fact 2 to more easily deal with Fact 1).... 2) X + Y > Z IF.... X = 1, Y = 0 and Z = 0, then the answer to the question is YES. X = 1/2, Y = 1/2 and Z = .7, then the answer to the question is NO. Fact 2 is INSUFFICIENT 1) X^2 + Y^2 > Z^2 The TESTs that we used in Fact 2 also "fit" the information in Fact 1... IF.... X = 1, Y = 0 and Z = 0, then the answer to the question is YES. X = 1/2, Y = 1/2 and Z = .7, then the answer to the question is NO. Fact 1 is INSUFFICIENT Combined, we have two sets of numbers that fit both Facts and produce different answers to the given question (one YES and one NO). Combined, INSUFFICIENT. Final Answer: GMAT assassins aren't born, they're made, Rich
_________________
760+: Learn What GMAT Assassins Do to Score at the Highest Levels Contact Rich at: Rich.C@empowergmat.com
Rich Cohen
CoFounder & GMAT Assassin
Special Offer: Save $75 + GMAT Club Tests Free
Official GMAT Exam Packs + 70 Pt. Improvement Guarantee www.empowergmat.com/
***********************Select EMPOWERgmat Courses now include ALL 6 Official GMAC CATs!***********************




Re: Is x^4 + y^4 > z^4? &nbs
[#permalink]
20 Dec 2017, 18:12



Go to page
1 2
Next
[ 25 posts ]



