Last visit was: 19 Nov 2025, 00:57 It is currently 19 Nov 2025, 00:57
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
lumone
Joined: 25 Nov 2006
Last visit: 26 Oct 2010
Posts: 275
Own Kudos:
286
 [3]
Schools:St Gallen, Cambridge, HEC Montreal
Posts: 275
Kudos: 286
 [3]
Kudos
Add Kudos
3
Bookmarks
Bookmark this Post
User avatar
x2suresh
Joined: 07 Nov 2007
Last visit: 18 Aug 2012
Posts: 715
Own Kudos:
3,139
 [1]
Given Kudos: 5
Location: New York
Posts: 715
Kudos: 3,139
 [1]
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
avatar
DrFawkes
Joined: 04 Aug 2011
Last visit: 08 Aug 2016
Posts: 5
Own Kudos:
Posts: 5
Kudos: 5
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,379
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,379
Kudos: 778,159
Kudos
Add Kudos
Bookmarks
Bookmark this Post
DrFawkes
x2suresh
lumone
Is x greater than x^3

(1) x is negative

(2) x^2 - x^3 > 2


1)

x =-2 x^3=-8 x>x^3
x=-1/2 x^3 = -1/8 x<x^3

not sufficient

2)

x^2 (1 - x) > 2

x^2 is always postive.|.. so (1-x) need to be positve and x can't be fractional values between -1 and 1

x must be -ve value < -1 i.e


x > x^3

sufficient.

B.

This is a really old question, and I found it recently in Jeff Sackmann's Data Sufficiency Challenge question bank. I am afraid I don't understand why Statement (2) above is sufficient, particularly the highlighted part above.

My interpretation is this: In order to keep x^2 > x^3, (1-x) > 0 (i.e. positive). This implies that 1 > x. x could therefore be negative integer, negative fraction or positive fraction. For instance:

x = -2 => x^2 = 4 and x^3 = -8 => x^2 > x^3 and 1-(-2) > 0. So, x > x^3

x = -1/2 => x^2 = 1/4 and x^3 = -1/8 => x^2 > x^3 and 1-(-1/2) > 0. However, x < x^3

x = 1/2 => x^2 = 1/4 and x^3 = 1/8 => x^2 > x^3 and 1-(1/2) > 0. So, x > x^3

Clearly, x CAN be fractional values between -1 and 1 for x^2 > x^3. But each time, the relation between x and x^3 may change. So B is not sufficient.

Can somebody please explain where I am going wrong? Or provide an alternative explanation. Thanks a lot!

I think you misread the second statement: it's x^2 - x^3 > 2 not (2) x^2 - x^3 > 0.
User avatar
Mbawarrior01
Joined: 12 Oct 2012
Last visit: 23 Jan 2018
Posts: 92
Own Kudos:
Given Kudos: 198
WE:General Management (Other)
Posts: 92
Kudos: 366
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Is x greater than \(x^3\) ?

(1) x is negative.

(2) \(x^2- x^3 > 2\)


I find such questions challenging. Please explain.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,379
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,379
Kudos: 778,159
Kudos
Add Kudos
Bookmarks
Bookmark this Post
aditi2013
Is x greater than \(x^3\) ?

(1) x is negative.

(2) \(x^2- x^3 > 2\)


I find such questions challenging. Please explain.

Merging topics. please refer to the discussion above.
User avatar
msk0657
User avatar
Retired Moderator
Joined: 26 Nov 2012
Last visit: 14 Feb 2020
Posts: 456
Own Kudos:
557
 [1]
Given Kudos: 46
Posts: 456
Kudos: 557
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Is x greater than \(x^3\) ?

(1) x is negative.

(2) \(x^2- x^3 > 2\)

Bunuel, can you explain Stat 2...I did half way ..\(x^2\) ( 1 - x ) > 2 and taken \(x^2\) > 0 as it is square root and tried with 1-x >2...and struck here.
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 18 Nov 2025
Posts: 16,267
Own Kudos:
76,985
 [4]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 76,985
 [4]
2
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
lumone
Is x greater than x^3 ?

(1) x is negative

(2) x^2 - x^3 > 2

Is x > x^3?

Statement 1: x is negative

If -1 < x < 0, x is less than x^3.
If x < -1, x is greater than x^3.
Not sufficient alone.

Statement 2: \(x^2 - x^3 > 2\)
\(x^3 - x^2 + 2 < 0\)
\((x + 1)(x^2 - 2x + 2) < 0\)

(x^2 - 2x + 2) has no real roots so it doesn't cut the x axis. It is positive for all real values of x.
So for (x+1)(x^2 - 2x + 2) to be negative, (x+1) must be negative.
So x + 1 < 0
x < -1
If x < -1, x is greater than x^3.

Sufficient

Answer (B)

Note: Know the relation between x, x^2 and x^3 on the 4 sections of the number line: x > 1, 0 < x< 1, -1 < x < 0 and x < -1
User avatar
shashankism
Joined: 13 Mar 2017
Last visit: 23 Dec 2024
Posts: 609
Own Kudos:
Given Kudos: 88
Affiliations: IIT Dhanbad
Location: India
Concentration: General Management, Entrepreneurship
GPA: 3.8
WE:Engineering (Energy)
Posts: 609
Kudos: 694
Kudos
Add Kudos
Bookmarks
Bookmark this Post
lumone
Is x greater than x^3 ?

(1) x is negative

(2) x^2 - x^3 > 2

DS : x>x^3?

Statement 1 : x<0
-1<x<0 , x^3 > x
x<-1, x<x^3

NOT SUFFICIENT


Statement 2 : x^2 - x^3 > 2
x^2> 2+x^3
For x>1, x^3 > x^2 So, x^3 +2 > x^2. This is not the case
For 0<x<1, x^2 <1 So, x^2 <2 +x^3 This is also not the case.
For -1<x<0, x^2<1 , -1<x^3<0 So, x^2 <2 +x^3 This is also not the case.
For x = -1 , x^2=2+x^3 This is also not the case.
For x<-1, x^2>2+x^3 This is the case.

Now if x<-1, Clearly x>x^3

Hence Answer B
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 18 Nov 2025
Posts: 16,267
Own Kudos:
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 76,985
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Responding to a pm:
Quote:

I didn't quite understand how you factored the cubic polynomial x^3 - x^2 + 2
Would appreciate it if you could walk me through the steps. Thanks in advance!

Here is how you will do it:
https://www.gmatclub.com/forum/veritas-prep-resource-links-no-longer-available-399979.html#/2013/0 ... rd-degree/
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 38,584
Own Kudos:
Posts: 38,584
Kudos: 1,079
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Moderators:
Math Expert
105379 posts
496 posts