GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 20 Oct 2019, 12:08

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

M27-18

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Find Similar Topics 
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 58434
M27-18  [#permalink]

Show Tags

New post 16 Sep 2014, 01:27
1
15
00:00
A
B
C
D
E

Difficulty:

  95% (hard)

Question Stats:

33% (02:28) correct 67% (02:19) wrong based on 169 sessions

HideShow timer Statistics

Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 58434
Re M27-18  [#permalink]

Show Tags

New post 16 Sep 2014, 01:27
2
7
Official Solution:


(1) \(3x + 4 \lt 2y + 3\). Re-arrange: \(3x \lt 2y-1\). \(x\) can be some very small number, for instance -100 and \(y\) some large enough number for instance -3 and the answer would be YES, \(x \lt y\) BUT if \(x=-2\) and \(y=-2.1\), then the answer would be NO, \(x \gt y\). Not sufficient.

(2) \(2x - 3 \lt 3y - 4\). Re-arrange: \(x \lt 1.5y-\frac{1}{2}\). Re-write as \(x \lt y+(0.5y-\frac{1}{2}) = y + \text{negative}\). So, \(x \lt y\) (as \(y+\text{negative}\) is "more negative" than \(y\)). Sufficient.


Answer: B
_________________
Verbal Forum Moderator
avatar
Joined: 15 Apr 2013
Posts: 178
Location: India
Concentration: General Management, Marketing
GMAT Date: 11-23-2015
GPA: 3.6
WE: Science (Other)
GMAT ToolKit User Reviews Badge
Re: M27-18  [#permalink]

Show Tags

New post 14 Nov 2015, 23:53
Hello,

Is there any specific approach to solve this type of questions. I find to solve these questions very difficult.

Thanks
Manager
Manager
avatar
Joined: 29 Nov 2011
Posts: 91
Re: M27-18  [#permalink]

Show Tags

New post 05 Mar 2016, 22:55
Bunuel
why can we apply same logic, which you applied in option B, in option A. We have x<2/3 y -1/3. please tell me if I am missing anything. y is negative and we are subtracting and -ve number.
Math Expert
avatar
V
Joined: 02 Aug 2009
Posts: 7991
Re: M27-18  [#permalink]

Show Tags

New post 05 Mar 2016, 23:54
9
2
sudhirmadaan wrote:
Bunuel
why can we apply same logic, which you applied in option B, in option A. We have x<2/3 y -1/3. please tell me if I am missing anything. y is negative and we are subtracting and -ve number.


Hi,
I'll try to answer this for you ..

We know x and y are negative numbers ..

and the answer to the Q lies in


1)knowing that if a -ive number is multiplied with a bigger positive number/integer, The product will become even smaller..
meaning 3x<2x etc
2) role of < and > signs
so if we want to check on the relative values of x and y, they have to brought in some way to same Coeff..

Can you spot the difference in two statements given keeping the above info in mind..

the statements are..

(1) 3x+4<2y+3
So, 3x+1<2y..
3x<2y-1
now x and y are negative integers..
so 3x< 2x..
but we cannot make a relation between 2x and 2y-1..
Insuff

(2) 2x−3<3y−4
2x<3y-1..
now 3x<2x..
so we can write 3x<2x<3y-1..
or 3x<3y-1
x<y-1/3..
since both x and y are negative numbers and x is lesser than sum of y, a -ive number, and another -ive number.. x<y
Suff

B

_________________
Intern
Intern
avatar
Joined: 06 Apr 2015
Posts: 11
Location: India
Concentration: General Management, International Business
GMAT ToolKit User
Re: M27-18  [#permalink]

Show Tags

New post 13 Jun 2016, 08:35
(1) 3x+4<2y+3

3x+1<2y

1.5x+0.5<y

If 1.5 times x (i.e. a -ve term) and 0.5 added to it is still less than y, then x should be less that y..isn't it?

what am I doing wrong?


(2) 2x−3<3y−4

2x-3+4<3y

2x+1<3y

.66x+.33<y

I used the same logic as stated above....X being -ve, .66 times x is also -ve and 0.33 added to it is still less than y. Hence x should be less than y.

What is wrong with my approach in (1) ?
Current Student
avatar
B
Joined: 23 Nov 2016
Posts: 70
Location: United States (MN)
GMAT 1: 760 Q50 V42
GPA: 3.51
M27-18  [#permalink]

Show Tags

New post 07 Mar 2017, 17:37
2
1
Graphically
One easy way to do this is to see then the lines intersect by graphing them. In the attached, red is (1), blue is (2), and yellow is the prompt. You can see that (1) intersects with y>x when x, y negative, and thus you can pick options that allow the red line to be true, but can literally go on either side of y > x. For the blue line, that is also possible, but only when y and x are positive. Thus, we know that (2) is sufficient for all x,y negative.

Algebraically
Another easy way to do this is to see when the lines intersect, but by using algebra.

(1) 2y > 3x+1
Pretend this is 2y=3x+1.
Set this equal to what we are comparing it to, y=x, or, 2y=2x.
2y=3x+1=2x
They intersect at x = -1. Either side of this, you will a Y or N answer when seeing if (1) is sufficient.

(2) 3y > 2x+1
Pretend this is 3y=2x+1.
Set this equal to what we are comparing it to, y=x, or, 3y=3x.
3y=2x+1=3x
They intersect at x=1. If less than 1, you will always get the same answer when seeing if (2) is sufficient. Since x < 0 < 1, (2) is sufficient.
>> !!!

You do not have the required permissions to view the files attached to this post.

Intern
Intern
avatar
B
Joined: 27 Mar 2017
Posts: 4
GMAT 1: 720 Q50 V38
M27-18  [#permalink]

Show Tags

New post 14 May 2017, 12:28
Why are we using picking numbers for statement 1 and solving the second statement using inequalities and algebra?
Both inequalities are of the same nature. Can someone please explain the sufficiency of the first statement using algebra?
Manager
Manager
avatar
G
Joined: 14 Oct 2012
Posts: 160
Reviews Badge
M27-18  [#permalink]

Show Tags

New post 03 Oct 2017, 12:52
Bunuel wrote:
Official Solution:


(1) \(3x + 4 \lt 2y + 3\). Re-arrange: \(3x \lt 2y-1\). \(x\) can be some very small number, for instance -100 and \(y\) some large enough number for instance -3 and the answer would be YES, \(x \lt y\) BUT if \(x=-2\) and \(y=-2.1\), then the answer would be NO, \(x \gt y\). Not sufficient.

(2) \(2x - 3 \lt 3y - 4\). Re-arrange: \(x \lt 1.5y-\frac{1}{2}\). Re-write as \(x \lt y+(0.5y-\frac{1}{2}) = y + \text{negative}\). So, \(x \lt y\) (as \(y+\text{negative}\) is "more negative" than \(y\)). Sufficient.


Answer: B


Question: Bunuel
case-1) 3x < 2y -1
y=0 => 3x < -1 => x < -0.33
x=0 => y > 0.5 (but y < 0 given). Therefore, we can have both x < y (-0.33 < -0.1) and x > y (-0.33 > -0.4). Thus 1 NS

case-2) x < (3/2)y - 1/2
y = 0 => x < -1/2
x = 0 => y > 1/3 (but y < 0 given). Therefore, we can have both x < y (-0.5 < -0.1) and x > y (-0.5 > -0.6). Thus 2 NS

Case-1+2) x < -0.33 & x < -0.5 => x < -0.33 & y < 0. Thus 1+2 NS => E

What am i doing wrong? Can you please clarify Bunuel...
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 58434
Re: M27-18  [#permalink]

Show Tags

New post 03 Oct 2017, 12:57
manishtank1988 wrote:
Bunuel wrote:
Official Solution:


(1) \(3x + 4 \lt 2y + 3\). Re-arrange: \(3x \lt 2y-1\). \(x\) can be some very small number, for instance -100 and \(y\) some large enough number for instance -3 and the answer would be YES, \(x \lt y\) BUT if \(x=-2\) and \(y=-2.1\), then the answer would be NO, \(x \gt y\). Not sufficient.

(2) \(2x - 3 \lt 3y - 4\). Re-arrange: \(x \lt 1.5y-\frac{1}{2}\). Re-write as \(x \lt y+(0.5y-\frac{1}{2}) = y + \text{negative}\). So, \(x \lt y\) (as \(y+\text{negative}\) is "more negative" than \(y\)). Sufficient.


Answer: B


Question: Bunuel
case-1) 3x < 2y -1
y=0 => 3x < -1 => x < -0.666
x=0 => y > 0.5 (but y < 0 given). Therefore, we can have both x < y (-0.33 < -0.1) and x > y (-0.33 > 0.4). Thus 1 NS

case-2) x < (3/2)y - 1/2
y = 0 => x < -1/2
x = 0 => y > 1/3 (but y < 0 given). Therefore, we can have both x < y (-0.33 < -0.1) and x > y (-0.33 > 0.4). Thus 2 NS

What am i doing wrong? Can you please clarify Bunuel...


We are told that BOTH x and y are negative numbers. Can you give an example when that condition and \(2x - 3 \lt 3y - 4\) are satisfied and x is not less than y?
_________________
Intern
Intern
avatar
B
Joined: 14 Feb 2015
Posts: 21
CAT Tests
Re: M27-18  [#permalink]

Show Tags

New post 04 Oct 2018, 00:07
[url]@chetan2u[/url] I noted that you mentioned that the 2nd witll equate to x<y-1/3 but if I take x=-2 and y=-2 then x<y does not hold true
_________________
RJ
Math Expert
avatar
V
Joined: 02 Aug 2009
Posts: 7991
Re: M27-18  [#permalink]

Show Tags

New post 04 Oct 2018, 00:59
Superg8 wrote:
[url]@chetan2u[/url] I noted that you mentioned that the 2nd witll equate to x<y-1/3 but if I take x=-2 and y=-2 then x<y does not hold true



Hi..
If you take x=y,how can x be less than y..
X and y are NEGATIVE..
AND statement II tells us x<y-1/3..( this is true we don't have to prove this)
You can't take x=y=-2..
If y =-2, x<-2-1/3=-5/3 so x<-5/3 it can be -3,-10
_________________
Intern
Intern
avatar
B
Joined: 25 Sep 2018
Posts: 8
GMAT 1: 640 Q46 V35
Re: M27-18  [#permalink]

Show Tags

New post 05 Oct 2018, 11:30
Bunuel wrote:
Official Solution:


(1) \(3x + 4 \lt 2y + 3\). Re-arrange: \(3x \lt 2y-1\). \(x\) can be some very small number, for instance -100 and \(y\) some large enough number for instance -3 and the answer would be YES, \(x \lt y\) BUT if \(x=-2\) and \(y=-2.1\), then the answer would be NO, \(x \gt y\). Not sufficient.

(2) \(2x - 3 \lt 3y - 4\). Re-arrange: \(x \lt 1.5y-\frac{1}{2}\). Re-write as \(x \lt y+(0.5y-\frac{1}{2}) = y + \text{negative}\). So, \(x \lt y\) (as \(y+\text{negative}\) is "more negative" than \(y\)). Sufficient.


Answer: B



How did you conclude that (0.5y−0.5) is more negative. if y is positive then that may not be the case.
Math Expert
avatar
V
Joined: 02 Aug 2009
Posts: 7991
Re: M27-18  [#permalink]

Show Tags

New post 05 Oct 2018, 11:33
sakuac wrote:
Bunuel wrote:
Official Solution:


(1) \(3x + 4 \lt 2y + 3\). Re-arrange: \(3x \lt 2y-1\). \(x\) can be some very small number, for instance -100 and \(y\) some large enough number for instance -3 and the answer would be YES, \(x \lt y\) BUT if \(x=-2\) and \(y=-2.1\), then the answer would be NO, \(x \gt y\). Not sufficient.

(2) \(2x - 3 \lt 3y - 4\). Re-arrange: \(x \lt 1.5y-\frac{1}{2}\). Re-write as \(x \lt y+(0.5y-\frac{1}{2}) = y + \text{negative}\). So, \(x \lt y\) (as \(y+\text{negative}\) is "more negative" than \(y\)). Sufficient.


Answer: B



How did you conclude that (0.5y−0.5) is more negative. if y is positive then that may not be the case.


It is given that y is negative so 0.5y is negative and add another negative term to it -0.5, you get smaller negative number
_________________
Manager
Manager
User avatar
S
Joined: 28 Jun 2018
Posts: 129
Location: Bouvet Island
GMAT 1: 490 Q39 V18
GMAT 2: 640 Q47 V30
GMAT 3: 670 Q50 V31
GMAT 4: 700 Q49 V36
GPA: 4
M27-18  [#permalink]

Show Tags

New post 25 Nov 2018, 10:18
Keeping it SIMPLE -

One trick to remember is that if u can prove \(x = y\) then u can answer YES or NO to a \(x<y\) or \(x>y\) question.

Statement 1 -
\(3x + 4 < 2y + 3\)
Rearrange : \(3x - 2y < -1\)
Simply try\(x = y = -2\)
We see that above condition is satisfied.
But answer to Is \(x < y?\) is NO.

Try \(x = -3\) and \(y = -2\)
We see that above condition is satisfied.
Hence answer to Is\(x < y?\) is YES.

Statement 2 -
\(2x - 3 < 3y - 4\)
Rearrange : \(2x - 3y < -1\)
Before testing values. Just observe the equation.
The (\(-3y\)) part has will always be positive since y is negative.
Also, we need to get a negative value so (\(2x)\) part has to be more than the \((-3y)\) part.
Is this possible if \(x\) and \(y\) are equal? No.
Hence we have different values of \(x\) and \(y\).
This should be sufficient.

Bunuel chetan2u please confirm.
VP
VP
User avatar
P
Joined: 14 Feb 2017
Posts: 1200
Location: Australia
Concentration: Technology, Strategy
Schools: LBS '22
GMAT 1: 560 Q41 V26
GMAT 2: 550 Q43 V23
GMAT 3: 650 Q47 V33
GMAT 4: 650 Q44 V36
WE: Management Consulting (Consulting)
Reviews Badge CAT Tests
Re: M27-18  [#permalink]

Show Tags

New post 15 May 2019, 01:50
I got this wrong for stupidly overlooking the "negative numbers" part in the stem. Took me a couple of minutes to realise why @bunuel's solution said y= negative haha
_________________
Goal: Q49, V41

+1 Kudos if I have helped you
Manager
Manager
avatar
G
Joined: 16 Oct 2011
Posts: 107
GMAT 1: 570 Q39 V41
GMAT 2: 640 Q38 V31
GMAT 3: 650 Q42 V38
GMAT 4: 650 Q44 V36
GMAT 5: 570 Q31 V38
GPA: 3.75
Reviews Badge CAT Tests
Re: M27-18  [#permalink]

Show Tags

New post 05 Sep 2019, 04:49
What about this approach? Notice that whether our expressions for our inequalities sit to the left or to the right of zero, our relationship between the expressions and x an y should be preserved. so I am going to test negative values only. You should get a similar result if you test positive values only 3x+4<2y+ 3. First lets investigate what happens to x and y if we let these expressions be close together on the number line. Let 3x+4 = =-2 and 2y+3=-1. This gives x=-2 and y=-2 so x is not < y. now lets investigate when thet expressions are far apart: Let 3x+4=-12 and 2y+3=-2. Then x=-16/3 and y = -5/2 and x is <y. Since we get a yes sometimes and a no sometimes NS.

For (2) we take the same approach

Let 2x-3 = -2 and 3y-4 = -1. then x= 1/2 and y = -8/3 and x is not <y Now let 2x-3 = -12 and 3y-4 = -2. Then x =-9/2 and y = 2/3 and x is still not <y. Since we get a no answer when the gap between expressions is small and large we conclude suff

B
GMAT Club Bot
Re: M27-18   [#permalink] 05 Sep 2019, 04:49
Display posts from previous: Sort by

M27-18

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  

Moderators: chetan2u, Bunuel






Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne