Author 
Message 
TAGS:

Hide Tags

Math Expert
Joined: 02 Sep 2009
Posts: 43849

New Set: Number Properties!!! [#permalink]
Show Tags
25 Mar 2013, 03:50
24
This post received KUDOS
Expert's post
170
This post was BOOKMARKED
The next set of medium/hard DS number properties questions. I'll post OA's with detailed explanations on Friday. Please, post your solutions along with the answers.1. If x is an integer, what is the value of x?(1) 23x is a prime number (2) \(2\sqrt{x^2}\) is a prime number. Solution: newsetnumberproperties14977540.html#p12053412. If a positive integer n has exactly two positive factors what is the value of n?(1) n/2 is one of the factors of n (2) The lowest common multiple of n and n + 10 is an even number. Solution: newsetnumberproperties14977540.html#p12053553. If 0 < x < y and x and y are consecutive perfect squares, what is the remainder when y is divided by x?(1) Both x and y is have 3 positive factors. (2) Both \(\sqrt{x}\) and \(\sqrt{y}\) are prime numbers Solution: newsetnumberproperties14977560.html#p12053584. Each digit of the threedigit integer K is a positive multiple of 4, what is the value of K?(1) The units digit of K is the least common multiple of the tens and hundreds digit of K (2) K is NOT a multiple of 3. Solution: newsetnumberproperties14977560.html#p12053615. If a, b, and c are integers and a < b < c, are a, b, and c consecutive integers?(1) The median of {a!, b!, c!} is an odd number. (2) c! is a prime number Solution: newsetnumberproperties14977560.html#p12053646. Set S consists of more than two integers. Are all the numbers in set S negative?(1) The product of any three integers in the list is negative (2) The product of the smallest and largest integers in the list is a prime number. Solution: newsetnumberproperties14977560.html#p12053737. Is x the square of an integer?(1) When x is divided by 12 the remainder is 6 (2) When x is divided by 14 the remainder is 2 Solution: newsetnumberproperties14977560.html#p12053788. Set A consist of 10 terms, each of which is a reciprocal of a prime number, is the median of the set less than 1/5?(1) Reciprocal of the median is a prime number (2) The product of any two terms of the set is a terminating decimal Solution: newsetnumberproperties14977560.html#p12053829. If [x] denotes the greatest integer less than or equal to x for any number x, is [a] + [b] = 1 ?(1) ab = 2 (2) 0 < a < b < 2 Solution: newsetnumberproperties14977560.html#p120538910. If N = 3^x*5^y, where x and y are positive integers, and N has 12 positive factors, what is the value of N?(1) 9 is NOT a factor of N (2) 125 is a factor of N Solution: newsetnumberproperties14977560.html#p1205392BONUS QUESTION: 11. If x and y are positive integers, is x a prime number?(1) x  2 < 2  y (2) x + y  3 = 1y Solution: newsetnumberproperties14977560.html#p1205398Kudos points for each correct solution!!!
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Manager
Joined: 29 Sep 2013
Posts: 51

Re: New Set: Number Properties!!! [#permalink]
Show Tags
14 Oct 2013, 14:25
Bunuel wrote: 2. If a positive integer n has exactly two positive factors what is the value of n?
Notice that, n has exactly two positive factors simply means that n is a prime number, so its factors are 1 and n itself.
(1) n/2 is one of the factors of n. Since n/2 cannot equal to n, then n/2=1, thus n=2. Sufficient.
(2) The lowest common multiple of n and n + 10 is an even number. If n is an odd prime, then n+10 is also odd. The LCM of two odd numbers cannot be even, therefore n is an even prime, so 2. Sufficient.
Answer: D. Dear Bunuel That is a great observation: The LCM of two odd numbers cannot be evenCan we take it as a general observation and expand it further, Like: 1) The LCM of two ODD numbers will always be ODD. 2) The LCM of two EVEN numbers will always be EVEN. Or further expand it Like: 3) The LCM of any number of ODD Integers will always be ODD. 4) The LCM of any number of EVEN Integers will always be EVEN. I guess this bit of Info can be great aid on the Test day. Thanks



Intern
Joined: 15 Jul 2013
Posts: 5

Re: New Set: Number Properties!!! [#permalink]
Show Tags
11 Nov 2013, 21:35
Hi, In question 3 above, it says that X and Y have 3 postive factors. But it does not say only positive factors. Could the number not have other factors such as 3,1,9 apart from 3,1,9? What am I missing out? It will be great if someone can point what I am doing incorrectly. Thanks!



Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 7944
Location: Pune, India

Re: New Set: Number Properties!!! [#permalink]
Show Tags
11 Nov 2013, 22:27
adeel2000 wrote: Hi, In question 3 above, it says that X and Y have 3 postive factors. But it does not say only positive factors. Could the number not have other factors such as 3,1,9 apart from 3,1,9? What am I missing out? It will be great if someone can point what I am doing incorrectly. Thanks! In GMAT, factors are always positive. On the other hand, multiples can be positive as well as negative.
_________________
Karishma Veritas Prep  GMAT Instructor My Blog
Get started with Veritas Prep GMAT On Demand for $199
Veritas Prep Reviews



Intern
Status: Battle for 700+ is ON!!
Joined: 18 Jul 2013
Posts: 13
Location: India
Concentration: Healthcare, General Management
GMAT Date: 01182014
GPA: 3.9
WE: Information Technology (Consumer Products)

Re: New Set: Number Properties!!! [#permalink]
Show Tags
12 Nov 2013, 03:36
2. If a positive integer n has exactly two positive factors what is the value of n? (1) n/2 is one of the factors of n (2) The lowest common multiple of n and n + 10 is an even number. As per Question Stem, 'n' has exactly 2 positive factors, it has to be prime. i.e. 1 & itself 1) As per this, 'n' has to be 2 SUFF 2) As per this, 'n' has to be even. Referring to Question stem, it has to be 2 SUFF Ans : D Please correct me if I'm wrong.
_________________
Cheers, BG
Hit 'Kudos' if you find my post helpful
OG 13 Verbal Directory: http://gmatclub.com/forum/officialguideverbalquestiondirectoryog13andog161949.html#p1121171 Question Of the Day: http://gmatclub.com/blog/category/blog/gmattests/?fl=menu Extreme Collection of 2000 PS & DS: http://gmatclub.com/forum/1001dsquestionsfile106193.html?fl=similar CR Tips & Approach to arrive at Best Answer: http://gmatclub.com/forum/crmethodsanapproachtofindthebestanswers93146.html
Arise, Awake and Stop not till the goal is reached. I won't stop till I hit 700+



Math Expert
Joined: 02 Sep 2009
Posts: 43849

Re: New Set: Number Properties!!! [#permalink]
Show Tags
12 Nov 2013, 09:56



Manager
Joined: 26 May 2013
Posts: 97

Re: New Set: Number Properties!!! [#permalink]
Show Tags
02 Jan 2014, 09:52
Bunuel wrote: 7. Is x the square of an integer?
The question basically asks whether x is a perfect square (a perfect square, is an integer that is the square of an integer. For example 16=4^2, is a perfect square).
Perfect square always has even powers of its prime factors. The reverse is also true: if a number has even powers of its prime factors then it's a perfect square. For example: \(36=2^2*3^2\), powers of prime factors 2 and 3 are even.
(1) When x is divided by 12 the remainder is 6. Given that \(x=12q+6=6(2q+1)=2*3*(2q+1)\). Now, since 2q+1 is an odd number then the power of 2 in x will be odd (1), thus x cannot be a perfect square. Sufficient.
(2) When x is divided by 14 the remainder is 2. Given that \(x=14p+2\). So, x could be 2, 16, 30, ... Thus, x may or may not be a perfect square. Not sufficient.
Answer: A. first and foremost, thanks for this problem set. it's helped me immenselyCan you offer more explanation on St. (1) and St. (2), specifically: St. (1): which portion of the equation represents any specific "power" that is distributed to 2 ? All I can gather is that 2 will be multiplied by 3 (odd) and then multiplied by some odd number (2q + 1). In effect you are multiplying an even (6) by some odd number. How does this tell us the power that 2 is raised to? Example: x = 2*3*[2*2 +1) = 18 Prime factors of 18 = 2^1 and 3^2. How does the equation (2q+1) ensure that 2 will always be raised to an odd power? St. (2): Does it make sense/is it possible to break it out in similar fashion as you did to statement 1? x = 2(7p+1) ? The (7p+1) could yield an odd or even number, depending on what q is (as displayed in your example). Also, what program do you use for equation writing?



Math Expert
Joined: 02 Sep 2009
Posts: 43849

Re: New Set: Number Properties!!! [#permalink]
Show Tags
03 Jan 2014, 03:53
mrwells2 wrote: Bunuel wrote: 7. Is x the square of an integer?
The question basically asks whether x is a perfect square (a perfect square, is an integer that is the square of an integer. For example 16=4^2, is a perfect square).
Perfect square always has even powers of its prime factors. The reverse is also true: if a number has even powers of its prime factors then it's a perfect square. For example: \(36=2^2*3^2\), powers of prime factors 2 and 3 are even.
(1) When x is divided by 12 the remainder is 6. Given that \(x=12q+6=6(2q+1)=2*3*(2q+1)\). Now, since 2q+1 is an odd number then the power of 2 in x will be odd (1), thus x cannot be a perfect square. Sufficient.
(2) When x is divided by 14 the remainder is 2. Given that \(x=14p+2\). So, x could be 2, 16, 30, ... Thus, x may or may not be a perfect square. Not sufficient.
Answer: A. first and foremost, thanks for this problem set. it's helped me immenselyCan you offer more explanation on St. (1) and St. (2), specifically: St. (1): which portion of the equation represents any specific "power" that is distributed to 2 ? All I can gather is that 2 will be multiplied by 3 (odd) and then multiplied by some odd number (2q + 1). In effect you are multiplying an even (6) by some odd number. How does this tell us the power that 2 is raised to? Example: x = 2*3*[2*2 +1) = 18 Prime factors of 18 = 2^1 and 3^2. How does the equation (2q+1) ensure that 2 will always be raised to an odd power? St. (2): Does it make sense/is it possible to break it out in similar fashion as you did to statement 1? x = 2(7p+1) ? The (7p+1) could yield an odd or even number, depending on what q is (as displayed in your example). Also, what program do you use for equation writing? For (1): \(x=2*3*(2q+1)=2*odd*odd\) > two odd multiples there obviously do not have 2 as their factors, thus x has 2 in first power only (we have only one 2 there). Fro (2) your reasoning is correct. As for formatting, check here: rulesforpostingpleasereadthisbeforeposting133935.html#p1096628Hope this helps.
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Manager
Joined: 26 May 2013
Posts: 97

Re: New Set: Number Properties!!! [#permalink]
Show Tags
13 Mar 2014, 17:47
Bunuel wrote: SOLUTIONS:
1. If x is an integer, what is the value of x?
(1) \(23x\) is a prime number. From this statement it follows that x=1 or x=1. Not sufficient.
(2) \(2\sqrt{x^2}\) is a prime number. The same here: x=1 or x=1. Not sufficient.
(1)+(2) x could be 1 or 1. Not sufficient.
Answer: E. I thought on the GMAT, you can only have positive roots as answers ? Following the post here: http://www.manhattangmat.com/forums/neg ... 14759.htmlIs Statement 2 something we can expect to see on the GMAT ?



Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 7944
Location: Pune, India

Re: New Set: Number Properties!!! [#permalink]
Show Tags
13 Mar 2014, 19:43
mrwells2 wrote: Bunuel wrote: SOLUTIONS:
1. If x is an integer, what is the value of x?
(1) \(23x\) is a prime number. From this statement it follows that x=1 or x=1. Not sufficient.
(2) \(2\sqrt{x^2}\) is a prime number. The same here: x=1 or x=1. Not sufficient.
(1)+(2) x could be 1 or 1. Not sufficient.
Answer: E. I thought on the GMAT, you can only have positive roots as answers ? Following the post here: http://www.manhattangmat.com/forums/neg ... 14759.htmlIs Statement 2 something we can expect to see on the GMAT ? Yes, you do have only positive roots on GMAT. \(\sqrt{4} = 2\) only (not 2) \(\sqrt{x}\) is never negative Bot note here that the expression is different: \(\sqrt{x^2}\) \(\sqrt{x^2} = x\) (absolute value of x) x can be 1 or 1 here because it is squared. \(\sqrt{1}\) will be 1 only. So, if \(x^2 = 4\), x = 2 or 2 But \(\sqrt{4} = 2\) only on the GMAT
_________________
Karishma Veritas Prep  GMAT Instructor My Blog
Get started with Veritas Prep GMAT On Demand for $199
Veritas Prep Reviews



Manager
Joined: 19 Mar 2012
Posts: 131

Re: New Set: Number Properties!!! [#permalink]
Show Tags
26 Mar 2014, 09:04
Bunuel wrote: 8. Set A consist of 10 terms, each of which is a reciprocal of a prime number, is the median of the set less than 1/5?(1) Reciprocal of the median is a prime number. If all the terms equal 1/2, then the median=1/2 and the answer is NO but if all the terms equal 1/7, then the median=1/7 and the answer is YES. Not sufficient. (2) The product of any two terms of the set is a terminating decimal. This statement implies that the set must consists of 1/2 or/and 1/5. Thus the median could be 1/2, 1/5 or (1/5+1/2)/2=7/20. None of the possible values is less than 1/5. Sufficient. Answer: B. Theory:Reduced fraction \(\frac{a}{b}\) (meaning that fraction is already reduced to its lowest term) can be expressed as terminating decimal if and only \(b\) (denominator) is of the form \(2^n5^m\), where \(m\) and \(n\) are nonnegative integers. For example: \(\frac{7}{250}\) is a terminating decimal \(0.028\), as \(250\) (denominator) equals to \(2*5^2\). Fraction \(\frac{3}{30}\) is also a terminating decimal, as \(\frac{3}{30}=\frac{1}{10}\) and denominator \(10=2*5\). Note that if denominator already has only 2s and/or 5s then it doesn't matter whether the fraction is reduced or not. For example \(\frac{x}{2^n5^m}\), (where x, n and m are integers) will always be the terminating decimal. We need reducing in case when we have the prime in denominator other then 2 or 5 to see whether it could be reduced. For example fraction \(\frac{6}{15}\) has 3 as prime in denominator and we need to know if it can be reduced. Questions testing this concept: doesthedecimalequivalentofpqwherepandqare89566.htmlanydecimalthathasonlyafinitenumberofnonzerodigits101964.htmlifabcdandeareintegersandp2a3bandq2c3d5eispqaterminatingdecimal125789.html700question94641.htmlisrs2isaterminatingdecimal91360.htmlplexplain89566.htmlwhichofthefollowingfractions88937.html Hi Bunuel Quick question on Statement 1 Here Let us assume SET S with 10 elements and let 5 th and 6th element be 1/a and 1/b where a and b are both prime. Now the median of the set would be a+b/2ab and it is given that reciprocal of the median is also prime.which means that 2(ab/a+b) will also be prime. So we have to achieve this ab=a+b and that is only possible when a and b are equal to 2.And this proves that Statement 1 is sufficient to answer the question. Can you please point where did I went wrong.
_________________
Feel Free to Press Kudos if you like the way I think .



Math Expert
Joined: 02 Sep 2009
Posts: 43849

Re: New Set: Number Properties!!! [#permalink]
Show Tags
26 Mar 2014, 09:16
282552 wrote: Bunuel wrote: 8. Set A consist of 10 terms, each of which is a reciprocal of a prime number, is the median of the set less than 1/5?(1) Reciprocal of the median is a prime number. If all the terms equal 1/2, then the median=1/2 and the answer is NO but if all the terms equal 1/7, then the median=1/7 and the answer is YES. Not sufficient. (2) The product of any two terms of the set is a terminating decimal. This statement implies that the set must consists of 1/2 or/and 1/5. Thus the median could be 1/2, 1/5 or (1/5+1/2)/2=7/20. None of the possible values is less than 1/5. Sufficient. Answer: B. Theory:Reduced fraction \(\frac{a}{b}\) (meaning that fraction is already reduced to its lowest term) can be expressed as terminating decimal if and only \(b\) (denominator) is of the form \(2^n5^m\), where \(m\) and \(n\) are nonnegative integers. For example: \(\frac{7}{250}\) is a terminating decimal \(0.028\), as \(250\) (denominator) equals to \(2*5^2\). Fraction \(\frac{3}{30}\) is also a terminating decimal, as \(\frac{3}{30}=\frac{1}{10}\) and denominator \(10=2*5\). Note that if denominator already has only 2s and/or 5s then it doesn't matter whether the fraction is reduced or not. For example \(\frac{x}{2^n5^m}\), (where x, n and m are integers) will always be the terminating decimal. We need reducing in case when we have the prime in denominator other then 2 or 5 to see whether it could be reduced. For example fraction \(\frac{6}{15}\) has 3 as prime in denominator and we need to know if it can be reduced. Questions testing this concept: doesthedecimalequivalentofpqwherepandqare89566.htmlanydecimalthathasonlyafinitenumberofnonzerodigits101964.htmlifabcdandeareintegersandp2a3bandq2c3d5eispqaterminatingdecimal125789.html700question94641.htmlisrs2isaterminatingdecimal91360.htmlplexplain89566.htmlwhichofthefollowingfractions88937.html Hi Bunuel Quick question on Statement 1 Here Let us assume SET S with 10 elements and let 5 th and 6th element be 1/a and 1/b where a and b are both prime. Now the median of the set would be a+b/2ab and it is given that reciprocal of the median is also prime.which means that 2(ab/a+b) will also be prime. So we have to achieve this ab=a+b and that is only possible when a and b are equal to 2.And this proves that Statement 1 is sufficient to answer the question. Can you please point where did I went wrong. 2ab/(a+b) will be prime if a=b=2 or a=b=5 (in all case when a=b=prime).
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Manager
Joined: 19 Mar 2012
Posts: 131

Re: New Set: Number Properties!!! [#permalink]
Show Tags
26 Mar 2014, 10:08
Bunuel wrote: 282552 wrote: Bunuel wrote: 8. Set A consist of 10 terms, each of which is a reciprocal of a prime number, is the median of the set less than 1/5?(1) Reciprocal of the median is a prime number. If all the terms equal 1/2, then the median=1/2 and the answer is NO but if all the terms equal 1/7, then the median=1/7 and the answer is YES. Not sufficient. (2) The product of any two terms of the set is a terminating decimal. This statement implies that the set must consists of 1/2 or/and 1/5. Thus the median could be 1/2, 1/5 or (1/5+1/2)/2=7/20. None of the possible values is less than 1/5. Sufficient. Answer: B. Theory:Reduced fraction \(\frac{a}{b}\) (meaning that fraction is already reduced to its lowest term) can be expressed as terminating decimal if and only \(b\) (denominator) is of the form \(2^n5^m\), where \(m\) and \(n\) are nonnegative integers. For example: \(\frac{7}{250}\) is a terminating decimal \(0.028\), as \(250\) (denominator) equals to \(2*5^2\). Fraction \(\frac{3}{30}\) is also a terminating decimal, as \(\frac{3}{30}=\frac{1}{10}\) and denominator \(10=2*5\). Note that if denominator already has only 2s and/or 5s then it doesn't matter whether the fraction is reduced or not. For example \(\frac{x}{2^n5^m}\), (where x, n and m are integers) will always be the terminating decimal. We need reducing in case when we have the prime in denominator other then 2 or 5 to see whether it could be reduced. For example fraction \(\frac{6}{15}\) has 3 as prime in denominator and we need to know if it can be reduced. Questions testing this concept: doesthedecimalequivalentofpqwherepandqare89566.htmlanydecimalthathasonlyafinitenumberofnonzerodigits101964.htmlifabcdandeareintegersandp2a3bandq2c3d5eispqaterminatingdecimal125789.html700question94641.htmlisrs2isaterminatingdecimal91360.htmlplexplain89566.htmlwhichofthefollowingfractions88937.html Hi Bunuel Quick question on Statement 1 Here Let us assume SET S with 10 elements and let 5 th and 6th element be 1/a and 1/b where a and b are both prime. Now the median of the set would be a+b/2ab and it is given that reciprocal of the median is also prime.which means that 2(ab/a+b) will also be prime. So we have to achieve this ab=a+b and that is only possible when a and b are equal to 2.And this proves that Statement 1 is sufficient to answer the question. Can you please point where did I went wrong. 2ab/(a+b) will be prime if a=b=2 or a=b=5 (in all case when a=b=prime). Oh Yes, I missed 5. I have one more question.I tend to make these kinda mistakes in DS questions and I feel so miserable that I think it through and in the end choose the wrong answer. Any suggestions for me to improve upon these kinda stupid mistakes.
_________________
Feel Free to Press Kudos if you like the way I think .



Intern
Joined: 30 Jul 2012
Posts: 4

Re: New Set: Number Properties!!! [#permalink]
Show Tags
31 Mar 2014, 20:49
Bunuel wrote: 6. Set S consists of more than two integers. Are all the integers in set S negative?
(1) The product of any three integers in the set is negative. If the set consists of only 3 terms, then the set could be either {negative, negative, negative} or {negative, positive, positive}. If the set consists of more than 3 terms, then the set can only have negative numbers. Not sufficient.
(2) The product of the smallest and largest integers in the set is a prime number. Since only positive numbers can be primes, then the smallest and largest integers in the set must be of the same sign. Thus the set consists of only negative or only positive integers. Not sufficient.
(1)+(2) Since the second statement rules out {negative, positive, positive} case which we had from (1), then we have that the set must have only negative integers. Sufficient.
Answer: C. Hi Bunuel, Thanks for your questions, you're the Benchmark. In this particular question I was wondering if we are assuming the S is a set of consecutive integers. Let me explain, If S is [1,2,3] C will be insufficient. So what I'm missing? Thanks



Math Expert
Joined: 02 Sep 2009
Posts: 43849

Re: New Set: Number Properties!!! [#permalink]
Show Tags
01 Apr 2014, 00:37
ArnauAnglerill wrote: Bunuel wrote: 6. Set S consists of more than two integers. Are all the integers in set S negative?
(1) The product of any three integers in the set is negative. If the set consists of only 3 terms, then the set could be either {negative, negative, negative} or {negative, positive, positive}. If the set consists of more than 3 terms, then the set can only have negative numbers. Not sufficient.
(2) The product of the smallest and largest integers in the set is a prime number. Since only positive numbers can be primes, then the smallest and largest integers in the set must be of the same sign. Thus the set consists of only negative or only positive integers. Not sufficient.
(1)+(2) Since the second statement rules out {negative, positive, positive} case which we had from (1), then we have that the set must have only negative integers. Sufficient.
Answer: C. Hi Bunuel, Thanks for your questions, you're the Benchmark. In this particular question I was wondering if we are assuming the S is a set of consecutive integers. Let me explain, If S is [1,2,3] C will be insufficient. So what I'm missing? Thanks Your set {3, 2, 1} does not satisfy any of the two statements: (1) The product of any three integers in the set is negative > the product of the three terms of your set is positive: (3)(2)1=6. (2) The product of the smallest and largest integers in the set is a prime number > the product of the smallest and largest integers in your set is NOT a prime: (3)1=3. Hope it helps.
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Manager
Joined: 21 Aug 2013
Posts: 99

Re: New Set: Number Properties!!! [#permalink]
Show Tags
02 Apr 2014, 01:48
Bunuel wrote: The next set of medium/hard DS number properties questions. I'll post OA's with detailed explanations on Friday. Please, post your solutions along with the answers.1. If x is an integer, what is the value of x?(1) 23x is a prime number (2) \(2\sqrt{x^2}\) is a prime number. Solution: newsetnumberproperties14977540.html#p12053412. If a positive integer n has exactly two positive factors what is the value of n?(1) n/2 is one of the factors of n (2) The lowest common multiple of n and n + 10 is an even number. Solution: newsetnumberproperties14977540.html#p12053553. If 0 < x < y and x and y are consecutive perfect squares, what is the remainder when y is divided by x?(1) Both x and y is have 3 positive factors. (2) Both \(\sqrt{x}\) and \(\sqrt{y}\) are prime numbers Solution: newsetnumberproperties14977560.html#p12053584. Each digit of the threedigit integer N is a positive multiple of 4, what is the value of K?(1) The units digit of K is the least common multiple of the tens and hundreds digit of K (2) K is NOT a multiple of 3. Solution: newsetnumberproperties14977560.html#p12053615. If a, b, and c are integers and a < b < c, are a, b, and c consecutive integers?(1) The median of {a!, b!, c!} is an odd number. (2) c! is a prime number Solution: newsetnumberproperties14977560.html#p12053646. Set S consists of more than two integers. Are all the numbers in set S negative?(1) The product of any three integers in the list is negative (2) The product of the smallest and largest integers in the list is a prime number. Solution: newsetnumberproperties14977560.html#p12053737. Is x the square of an integer?(1) When x is divided by 12 the remainder is 6 (2) When x is divided by 14 the remainder is 2 Solution: newsetnumberproperties14977560.html#p12053788. Set A consist of 10 terms, each of which is a reciprocal of a prime number, is the median of the set less than 1/5?(1) Reciprocal of the median is a prime number (2) The product of any two terms of the set is a terminating decimal Solution: newsetnumberproperties14977560.html#p12053829. If [x] denotes the greatest integer less than or equal to x for any number x, is [a] + [b] = 1 ?(1) ab = 2 (2) 0 < a < b < 2 Solution: newsetnumberproperties14977560.html#p120538910. If N = 3^x*5^y, where x and y are positive integers, and N has 12 positive factors, what is the value of N?(1) 9 is NOT a factor of N (2) 125 is a factor of N Solution: newsetnumberproperties14977560.html#p1205392BONUS QUESTION: 11. If x and y are positive integers, is x a prime number?(1) x  2 < 2  y (2) x + y  3 = 1y Solution: newsetnumberproperties14977560.html#p1205398Kudos points for each correct solution!!! Hi Bunuel, Please change N to K. 4. Each digit of the threedigit integer N is a positive multiple of 4, what is the value of K? (1) The units digit of K is the least common multiple of the tens and hundreds digit of K (2) K is NOT a multiple of 3.
_________________
Veritas Prep  650 MGMAT 1 590 MGMAT 2 640 (V48/Q31)
Please help the community by giving Kudos.



Math Expert
Joined: 02 Sep 2009
Posts: 43849

Re: New Set: Number Properties!!! [#permalink]
Show Tags
02 Apr 2014, 03:46
seabhi wrote: Bunuel wrote: The next set of medium/hard DS number properties questions. I'll post OA's with detailed explanations on Friday. Please, post your solutions along with the answers.1. If x is an integer, what is the value of x?(1) 23x is a prime number (2) \(2\sqrt{x^2}\) is a prime number. Solution: newsetnumberproperties14977540.html#p12053412. If a positive integer n has exactly two positive factors what is the value of n?(1) n/2 is one of the factors of n (2) The lowest common multiple of n and n + 10 is an even number. Solution: newsetnumberproperties14977540.html#p12053553. If 0 < x < y and x and y are consecutive perfect squares, what is the remainder when y is divided by x?(1) Both x and y is have 3 positive factors. (2) Both \(\sqrt{x}\) and \(\sqrt{y}\) are prime numbers Solution: newsetnumberproperties14977560.html#p12053584. Each digit of the threedigit integer N is a positive multiple of 4, what is the value of K?(1) The units digit of K is the least common multiple of the tens and hundreds digit of K (2) K is NOT a multiple of 3. Solution: newsetnumberproperties14977560.html#p12053615. If a, b, and c are integers and a < b < c, are a, b, and c consecutive integers?(1) The median of {a!, b!, c!} is an odd number. (2) c! is a prime number Solution: newsetnumberproperties14977560.html#p12053646. Set S consists of more than two integers. Are all the numbers in set S negative?(1) The product of any three integers in the list is negative (2) The product of the smallest and largest integers in the list is a prime number. Solution: newsetnumberproperties14977560.html#p12053737. Is x the square of an integer?(1) When x is divided by 12 the remainder is 6 (2) When x is divided by 14 the remainder is 2 Solution: newsetnumberproperties14977560.html#p12053788. Set A consist of 10 terms, each of which is a reciprocal of a prime number, is the median of the set less than 1/5?(1) Reciprocal of the median is a prime number (2) The product of any two terms of the set is a terminating decimal Solution: newsetnumberproperties14977560.html#p12053829. If [x] denotes the greatest integer less than or equal to x for any number x, is [a] + [b] = 1 ?(1) ab = 2 (2) 0 < a < b < 2 Solution: newsetnumberproperties14977560.html#p120538910. If N = 3^x*5^y, where x and y are positive integers, and N has 12 positive factors, what is the value of N?(1) 9 is NOT a factor of N (2) 125 is a factor of N Solution: newsetnumberproperties14977560.html#p1205392BONUS QUESTION: 11. If x and y are positive integers, is x a prime number?(1) x  2 < 2  y (2) x + y  3 = 1y Solution: newsetnumberproperties14977560.html#p1205398Kudos points for each correct solution!!! Hi Bunuel, Please change N to K. 4. Each digit of the threedigit integer N is a positive multiple of 4, what is the value of K? (1) The units digit of K is the least common multiple of the tens and hundreds digit of K (2) K is NOT a multiple of 3. ___________ Done. Thank you.
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Senior Manager
Joined: 20 Dec 2013
Posts: 266
Location: India

Re: New Set: Number Properties!!! [#permalink]
Show Tags
05 Apr 2014, 19:43
Q1. Option E. From S1:x could be 1/1. From S2:x could be 1/1. Combining too we get two values of x.
Posted from my mobile device



Manager
Joined: 04 Jan 2014
Posts: 120

Re: New Set: Number Properties!!! [#permalink]
Show Tags
09 Apr 2014, 23:41
Hi Bunnel
Could you please explain question 5 on the part "Now, since 2q+1 is an odd number then the power of 2 in x will be odd (1), thus x cannot be a perfect square. "?
Thanks



Math Expert
Joined: 02 Sep 2009
Posts: 43849

Re: New Set: Number Properties!!! [#permalink]
Show Tags
10 Apr 2014, 01:35



Manager
Joined: 30 Mar 2013
Posts: 127

Re: New Set: Number Properties!!! [#permalink]
Show Tags
10 May 2014, 10:47
Hello, for question 9, could you pls explain how the maximum value of [a]+[b] =2? I dont get it...I assumed a=1 so [a] = 1, and b=2, so [b]=2...that means ab=2...but [a]+[b]= 12=3...how do I get a 2? (as a maximum value if both are negative). thank you




Re: New Set: Number Properties!!!
[#permalink]
10 May 2014, 10:47



Go to page
Previous
1 2 3 4 5 6 7 8 9 10
Next
[ 200 posts ]



