GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 15 Dec 2018, 03:44

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel
Events & Promotions in December
PrevNext
SuMoTuWeThFrSa
2526272829301
2345678
9101112131415
16171819202122
23242526272829
303112345
Open Detailed Calendar
  • Free GMAT Strategy Webinar

     December 15, 2018

     December 15, 2018

     07:00 AM PST

     09:00 AM PST

    Aiming to score 760+? Attend this FREE session to learn how to Define your GMAT Strategy, Create your Study Plan and Master the Core Skills to excel on the GMAT.
  • $450 Tuition Credit & Official CAT Packs FREE

     December 15, 2018

     December 15, 2018

     10:00 PM PST

     11:00 PM PST

    Get the complete Official GMAT Exam Pack collection worth $100 with the 3 Month Pack ($299)

Numbers p, q, r and s have 7, 16, 20 and 22 factors. Which of these co

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Retired Moderator
User avatar
P
Status: The best is yet to come.....
Joined: 10 Mar 2013
Posts: 499
GMAT ToolKit User
Numbers p, q, r and s have 7, 16, 20 and 22 factors. Which of these co  [#permalink]

Show Tags

New post 20 Oct 2017, 07:19
8
00:00
A
B
C
D
E

Difficulty:

  95% (hard)

Question Stats:

38% (01:57) correct 62% (01:59) wrong based on 76 sessions

HideShow timer Statistics

Numbers p, q, r and s have 7, 16, 20 and 22 factors. Which of these could be a perfect cube?

A. p and q
B. q and r
C. r and s
D. p, q and r
E. p, q and s

_________________

Hasan Mahmud

Math Expert
User avatar
V
Joined: 02 Aug 2009
Posts: 7107
Numbers p, q, r and s have 7, 16, 20 and 22 factors. Which of these co  [#permalink]

Show Tags

New post 20 Oct 2017, 07:32
1
1
Mahmud6 wrote:
Numbers p, q, r and s have 7, 16, 20 and 22 factors. Which of these could be a perfect cube?

A. p and q
B. q and r
C. r and s
D. p, q and r
E. p, q and s



Hi...

since the Q is asking COULD, we have to find the possibilities of matching the perfect cube..
7 factors.. 1*7...... so if a number has 6 of a kind that is \(a^6\), factors = \(1+6=7...a^6= (a^2)^3\)....YES
16 factors.. 1*16...... so if a number has 15 of a kind that is \(a^{15}\), factors = \(1+15=16...a^{15}= (a^5)^3\)....YES
22 factors.. 1*21...... so if a number has 21 of a kind that is \(a^{21}\), factors = \(1+21=22...a^{21}= (a^7)^3\)....YES

p, q and s

E
_________________

1) Absolute modulus : http://gmatclub.com/forum/absolute-modulus-a-better-understanding-210849.html#p1622372
2)Combination of similar and dissimilar things : http://gmatclub.com/forum/topic215915.html
3) effects of arithmetic operations : https://gmatclub.com/forum/effects-of-arithmetic-operations-on-fractions-269413.html


GMAT online Tutor

PS Forum Moderator
avatar
D
Joined: 25 Feb 2013
Posts: 1217
Location: India
GPA: 3.82
GMAT ToolKit User Premium Member Reviews Badge
Numbers p, q, r and s have 7, 16, 20 and 22 factors. Which of these co  [#permalink]

Show Tags

New post 20 Oct 2017, 07:48
1
2
Mahmud6 wrote:
Numbers p, q, r and s have 7, 16, 20 and 22 factors. Which of these could be a perfect cube?

A. p and q
B. q and r
C. r and s
D. p, q and r
E. p, q and s


any cube is of the form \(a^{3k}\), and hence the number of factors for this number will be \(3k+1\)

This implies that the number of factors when divided by \(3\) will leave \(1\) as remainder.

so for our question \(7\), \(16\) & \(22\) will leave a remainder of \(1\) when divided by \(3\). Hence \(p\), \(q\) & \(s\) can be a perfect cube

Option E

for the sake of explanation, \(s\) has \(22\) factors, so \(s\) can be of the form \(p_1^{21}\), this can be written as \((p_1^7)^3\) i.e a perfect cube
Director
Director
User avatar
P
Joined: 13 Mar 2017
Posts: 666
Location: India
Concentration: General Management, Entrepreneurship
GPA: 3.8
WE: Engineering (Energy and Utilities)
CAT Tests
Re: Numbers p, q, r and s have 7, 16, 20 and 22 factors. Which of these co  [#permalink]

Show Tags

New post 30 Apr 2018, 01:31
Mahmud6 wrote:
Numbers p, q, r and s have 7, 16, 20 and 22 factors. Which of these could be a perfect cube?

A. p and q
B. q and r
C. r and s
D. p, q and r
E. p, q and s


This is a very tricky question.. Probably could not be solved if seen first time.

Any cube of the a^3k where a is a prime number will have 3k +1 factors.
For e.g. Factors of 3^3 = 1, 3, 3^2, 3^3
Factors of 3^6 = 1, 3, 3^2, 3^3, 3^4, 3^5, 3^6

So, we have to find the numbers of the form 3k+1 from the given numbers
7 = 3*2 +1
16 = 3*5+1
20 =/= 3k+1
22 = 3*7+1

So, p,q,s could be a perfect cube...
Answer E.
_________________

CAT 2017 99th percentiler : VA 97.27 | DI-LR 96.84 | QA 98.04 | OA 98.95
UPSC Aspirants : Get my app UPSC Important News Reader from Play store.

MBA Social Network : WebMaggu


Appreciate by Clicking +1 Kudos ( Lets be more generous friends.)



What I believe is : "Nothing is Impossible, Even Impossible says I'm Possible" : "Stay Hungry, Stay Foolish".

Director
Director
User avatar
P
Joined: 13 Mar 2017
Posts: 666
Location: India
Concentration: General Management, Entrepreneurship
GPA: 3.8
WE: Engineering (Energy and Utilities)
CAT Tests
Re: Numbers p, q, r and s have 7, 16, 20 and 22 factors. Which of these co  [#permalink]

Show Tags

New post 30 Apr 2018, 01:43
Mahmud6 wrote:
Numbers p, q, r and s have 7, 16, 20 and 22 factors. Which of these could be a perfect cube?

A. p and q
B. q and r
C. r and s
D. p, q and r
E. p, q and s


Another comprehensive solution could be..

Number of factor of a number a^k*b^m*c^n.......= (1+k)(1+m)(1+n)...... , where a,b,c, are prime numbers.

So, if a number has (1+k)(1+m)(1+n)...... factors then the number is of the form a^k*b^m*c^n.......

Now lets do this for the factors provided.

7 = (1+6) : So the number will be of the form a^6 ........ a perfect cube.

16 = (1+15): So the number will be of the form a^15 ........ a perfect cube.
16= (8)(2) = (1+7)(1+1): So the number will be of the form a^7*b^1
16 = (4)(4) = (1+3)(1+3): So the number will be of the form a^3 * b^3
and various other forms can be formed.....e.g. 2*2*4 , 2*2*2*2, ...

20 = 1+19 : So the number will be of the form a^19
20 = 5*4 = (1+4) (1+3): So, the number will be of the form a^4 * b^3
and various other forms can be formed ... e.g 5*2*2, 10*2
But none will give a perfect cube.

22 = 1+21: So the number will be of the form a^21............. a perfect cube.
22 = 11*2 = (1+10)(1+1): So, the number will be of the form a^10*b^1

Hence p,q and s could be a perfect cube..
_________________

CAT 2017 99th percentiler : VA 97.27 | DI-LR 96.84 | QA 98.04 | OA 98.95
UPSC Aspirants : Get my app UPSC Important News Reader from Play store.

MBA Social Network : WebMaggu


Appreciate by Clicking +1 Kudos ( Lets be more generous friends.)



What I believe is : "Nothing is Impossible, Even Impossible says I'm Possible" : "Stay Hungry, Stay Foolish".

Target Test Prep Representative
User avatar
G
Status: Head GMAT Instructor
Affiliations: Target Test Prep
Joined: 04 Mar 2011
Posts: 2830
Re: Numbers p, q, r and s have 7, 16, 20 and 22 factors. Which of these co  [#permalink]

Show Tags

New post 01 May 2018, 08:50
Mahmud6 wrote:
Numbers p, q, r and s have 7, 16, 20 and 22 factors. Which of these could be a perfect cube?

A. p and q
B. q and r
C. r and s
D. p, q and r
E. p, q and s


To determine the number of total factors of a number, we add 1 to the number of each unique prime factor and multiply. Also, recall that a perfect cube has unique prime factors that are in quantities of a multiple of 3. Thus, any of these values p, q, r, or s must possess both concepts combined: i.e., the number of factors must be 1 more than a multiple of 3.

So, for instance, 2^3 is a perfect cube, and it has 3 + 1 = 4 total factors.

2^6 is a perfect cube, and it has 6 + 1 = 7 prime factors.

Thus, we see that any number that has a total number of factors that is “1 more” than a multiple of 3, is a perfect cube.

We are given that p has 7 factors; subtracting 1 from 7 gives us 6, which is a multiple of 3. Thus, p is a perfect cube.

Similarly, q has 16 factors; subtracting 1 from 16 gives us 15, which is a multiple of 3. Thus, q is a perfect cube.

We see that r is not a perfect cube because 1 less than the number of factors is 20 - 1 = 19, and 19 is not a multiple of 3.

Finally, s has 22 factors; subtracting 1 from 22 gives us 21, which is a multiple of 3. Thus, s is a perfect cube.

So p, q, and s could all be a perfect cube.

Answer: E
_________________

Jeffery Miller
Head of GMAT Instruction

GMAT Quant Self-Study Course
500+ lessons 3000+ practice problems 800+ HD solutions

GMAT Club Bot
Re: Numbers p, q, r and s have 7, 16, 20 and 22 factors. Which of these co &nbs [#permalink] 01 May 2018, 08:50
Display posts from previous: Sort by

Numbers p, q, r and s have 7, 16, 20 and 22 factors. Which of these co

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.