Author 
Message 
TAGS:

Hide Tags

Manager
Joined: 31 Oct 2011
Posts: 241

Rita and Sam play the following game with n sticks on a
[#permalink]
Show Tags
03 Apr 2012, 13:02
Question Stats:
38% (02:26) correct 62% (02:22) wrong based on 569 sessions
HideShow timer Statistics
Rita and Sam play the following game with n sticks on a table. Each must remove 1,2,3,4, or 5 sticks at a time on alternate turns, and no stick that is removed is put back on the table. Tha one who removes the last stick (or sticks) from the table wins. If Rita goes first, which of the following is a value of n such that Sam can always win no matter how Rita plays? A. 7 B. 10 C. 11 D. 12 E. 16
Official Answer and Stats are available only to registered users. Register/ Login.




Math Expert
Joined: 02 Sep 2009
Posts: 49969

Re: Rita and Sam play the following game with n sticks on a
[#permalink]
Show Tags
03 Apr 2012, 13:21
eybrj2 wrote: Rita and Sam play the following game with n sticks on a table. Each must remove 1,2,3,4, or 5 sticks at a time on alternate turns, and no stick that is removed is put back on the table. Tha one who removes the last stick (or sticks) from the table wins. If Rita goes first, which of the following is a value of n such that Sam can always win no matter how Rita plays?
A. 7 B. 10 C. 11 D. 12 E. 16 If the number of sticks on a table is a multiple of 6, then the second player will win in any case (well if the player is smart enough). Consider n=6, no matter how many sticks will be removed by the first player (1, 2, 3 ,4 or 5), the rest (5, 4, 3, 2, or 1) can be removed by the second one. The same for n=12: no matter how many sticks will be removed by the first player 1, 2, 3 ,4 or 5, the second one can remove 5, 4, 3, 2, or 1 so that to leave 6 sticks on the table and we are back to the case we discussed above. Answer: D.
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics




Math Expert
Joined: 02 Sep 2009
Posts: 49969

Re: Rita and Sam play the following game with n sticks on a
[#permalink]
Show Tags
31 May 2013, 06:22



Manager
Joined: 14 Nov 2011
Posts: 127
Location: United States
Concentration: General Management, Entrepreneurship
GPA: 3.61
WE: Consulting (Manufacturing)

Re: Rita and Sam play the following game with n sticks on a
[#permalink]
Show Tags
03 Jun 2013, 21:57
Bunuel wrote: eybrj2 wrote: Rita and Sam play the following game with n sticks on a table. Each must remove 1,2,3,4, or 5 sticks at a time on alternate turns, and no stick that is removed is put back on the table. Tha one who removes the last stick (or sticks) from the table wins. If Rita goes first, which of the following is a value of n such that Sam can always win no matter how Rita plays?
A. 7 B. 10 C. 11 D. 12 E. 16 If the number of sticks on a table is a multiple of 6, then the second player will win in any case (well if the player is smart enough). Consider n=6, no matter how many sticks will be removed by the first player (1, 2, 3 ,4 or 5), the rest (5, 4, 3, 2, or 1) can be removed by the second one. The same for n=12: no matter how many sticks will be removed by the first player 1, 2, 3 ,4 or 5, the second one can remove 5, 4, 3, 2, or 1 so that to leave 6 sticks on the table and we are back to the case we discussed above. Answer: D. Hi Bunnel, Please explain this: N = 12, here 1 and 2 shows steps in a game: rita picks 5 first, out of remaining 7 sam can pick a maximum of 5, which leaves 2 sticks after round one. On her next chance rita can pick 2 and win. R S 1 5 5 2 2 > Rita wins similarly: R S 1 4 5 2 3 > Rita wins R S 1 2 5 2 5 > Rita wins R S 1 2 2 2 5 3 > Sam wins R S 1 2 3 2 5 2 > Sam wins So both can win when n=12. I agree for n=6, but not for n=12.



Math Expert
Joined: 02 Sep 2009
Posts: 49969

Re: Rita and Sam play the following game with n sticks on a
[#permalink]
Show Tags
04 Jun 2013, 03:46
cumulonimbus wrote: Bunuel wrote: eybrj2 wrote: Rita and Sam play the following game with n sticks on a table. Each must remove 1,2,3,4, or 5 sticks at a time on alternate turns, and no stick that is removed is put back on the table. Tha one who removes the last stick (or sticks) from the table wins. If Rita goes first, which of the following is a value of n such that Sam can always win no matter how Rita plays?
A. 7 B. 10 C. 11 D. 12 E. 16 If the number of sticks on a table is a multiple of 6, then the second player will win in any case (well if the player is smart enough). Consider n=6, no matter how many sticks will be removed by the first player (1, 2, 3 ,4 or 5), the rest (5, 4, 3, 2, or 1) can be removed by the second one. The same for n=12: no matter how many sticks will be removed by the first player 1, 2, 3 ,4 or 5, the second one can remove 5, 4, 3, 2, or 1 so that to leave 6 sticks on the table and we are back to the case we discussed above. Answer: D. Hi Bunnel, Please explain this: N = 12, here 1 and 2 shows steps in a game: rita picks 5 first, out of remaining 7 sam can pick a maximum of 5, which leaves 2 sticks after round one. On her next chance rita can pick 2 and win. R S 1 5 5 2 2 > Rita wins similarly: R S 1 4 5 2 3 > Rita wins R S 1 2 5 2 5 > Rita wins R S 1 2 2 2 5 3 > Sam wins R S 1 2 3 2 5 2 > Sam wins So both can win when n=12. I agree for n=6, but not for n=12. That;s not correct. Both players can win BUT if the number of sticks on a table is a multiple of 6, then the second player will win in any case IF the player is smart enough. n=12: no matter how many sticks will be removed by the first player 1, 2, 3 , 4 or 5, the second one can remove 5, 4, 3, 2, or 1, RESPECTIVELY so that to leave 6 sticks on the table.
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Manager
Joined: 14 Nov 2011
Posts: 127
Location: United States
Concentration: General Management, Entrepreneurship
GPA: 3.61
WE: Consulting (Manufacturing)

Re: Rita and Sam play the following game with n sticks on a
[#permalink]
Show Tags
04 Jun 2013, 19:12
If the number of sticks on a table is a multiple of 6, then the second player will win in any case (well if the player is smart enough).
Consider n=6, no matter how many sticks will be removed by the first player (1, 2, 3 ,4 or 5), the rest (5, 4, 3, 2, or 1) can be removed by the second one.
The same for n=12: no matter how many sticks will be removed by the first player 1, 2, 3 ,4 or 5, the second one can remove 5, 4, 3, 2, or 1 so that to leave 6 sticks on the table and we are back to the case we discussed above.
Answer: D.[/quote]
Hi Bunnel, Please explain this:
N = 12, here 1 and 2 shows steps in a game: rita picks 5 first, out of remaining 7 sam can pick a maximum of 5, which leaves 2 sticks after round one. On her next chance rita can pick 2 and win.
R S 1 5 5 2 2 > Rita wins
similarly: R S 1 4 5 2 3 > Rita wins R S 1 2 5 2 5 > Rita wins R S 1 2 2 2 5 3 > Sam wins R S 1 2 3 2 5 2 > Sam wins
So both can win when n=12. I agree for n=6, but not for n=12.[/quote]
That;s not correct.
Both players can win BUT if the number of sticks on a table is a multiple of 6, then the second player will win in any case IF the player is smart enough.
n=12: no matter how many sticks will be removed by the first player 1, 2, 3 , 4 or 5, the second one can remove 5, 4, 3, 2, or 1, RESPECTIVELY so that to leave 6 sticks on the table.[/quote]
got it. thanks. is this gmat question ?



Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 8386
Location: Pune, India

Re: Rita and Sam play the following game with n sticks on a
[#permalink]
Show Tags
04 Jun 2013, 21:26
eybrj2 wrote: Rita and Sam play the following game with n sticks on a table. Each must remove 1,2,3,4, or 5 sticks at a time on alternate turns, and no stick that is removed is put back on the table. Tha one who removes the last stick (or sticks) from the table wins. If Rita goes first, which of the following is a value of n such that Sam can always win no matter how Rita plays?
A. 7 B. 10 C. 11 D. 12 E. 16 I would like to point out one thing about these questions based on games. These games are made to have a sure shot winner (if both players play intelligently and to win) under certain conditions. If A and B are playing, B's move will be decided by A's move if B has to win i.e. there are complementary moves. For example, in this question, if A picks 2 sticks, B must pick 4 sticks. If A picks 3 sticks, B must pick 3 too. So to solve these questions you need to find this particular complementary relation. This question tell us that one can pick 1/2/3/4/5 sticks. This means n must be greater than 5 to have a game else the one who picks first will pick all and win. If n = 6, the first one to pick must pick at least 1 and at most 5 sticks leaving anywhere between 5 to 1 sticks for the other player. The other player will definitely win. If n= 7, the first player will pick 1 and leave the other player with 6 sticks. The first player will win. So the object of the game is to leave 6 sticks for your opponent. If the number of sticks is a multiple of 6, you can always make a complementary move to your opponent's move and ensure that you leave your opponent with 6 sticks. For example, if your opponent picks 1 stick, you pick 5, if he picks 2 sticks, you pick 4 and so on. So when Rita starts, Sam can complement her move each time and leave her with 6 sticks at the end if the total number of sticks is a multiple of 6. There is only one multiple of 6 in the options. Hence, answer must be (D)
_________________
Karishma Veritas Prep GMAT Instructor
Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >
GMAT selfstudy has never been more personalized or more fun. Try ORION Free!



Manager
Joined: 07 Apr 2012
Posts: 104
Location: United States
Concentration: Entrepreneurship, Operations
GPA: 3.9
WE: Operations (Manufacturing)

Re: Rita and Sam play the following game with n sticks on a
[#permalink]
Show Tags
02 Sep 2013, 21:05
so what is the generalisation in such questions or we just have to analyze everytime?



Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 8386
Location: Pune, India

Re: Rita and Sam play the following game with n sticks on a
[#permalink]
Show Tags
02 Sep 2013, 21:28
ygdrasil24 wrote: so what is the generalisation in such questions or we just have to analyze everytime? To have a sure shot winner, you need complimentary moves. You have to analyze to figure out the complimentary move every time, of course.
_________________
Karishma Veritas Prep GMAT Instructor
Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >
GMAT selfstudy has never been more personalized or more fun. Try ORION Free!



Director
Joined: 17 Dec 2012
Posts: 629
Location: India

Re: Rita and Sam play the following game with n sticks on a
[#permalink]
Show Tags
02 Sep 2013, 21:39
ygdrasil24 wrote: so what is the generalisation in such questions or we just have to analyze everytime? The trick is to rephrase the question in more general terms. In this case it would be: What is the number that can always be divided into even number of times when each division can be up to 5. The answer is one greater than 5 which is 6 because whatever be the first value chosen, the second value can be chosen such that 6 can always be divided into two. The same idea can be extended to the multiples of 6 such that they can always be divided even number of times given that each division can be from 1 to 5.
_________________
Srinivasan Vaidyaraman Sravna Holistic Solutions http://www.sravnatestprep.com
Holistic and Systematic Approach



NonHuman User
Joined: 09 Sep 2013
Posts: 8431

Re: Rita and Sam play the following game with n sticks on a
[#permalink]
Show Tags
12 Mar 2018, 23:03
Hello from the GMAT Club BumpBot! Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up  doing my job. I think you may find it valuable (esp those replies with Kudos). Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
GMAT Books  GMAT Club Tests  Best Prices on GMAT Courses  GMAT Mobile App  Math Resources  Verbal Resources




Re: Rita and Sam play the following game with n sticks on a &nbs
[#permalink]
12 Mar 2018, 23:03






