Last visit was: 20 Nov 2025, 05:28 It is currently 20 Nov 2025, 05:28
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 20 Nov 2025
Posts: 105,414
Own Kudos:
778,493
 [4]
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,414
Kudos: 778,493
 [4]
Kudos
Add Kudos
4
Bookmarks
Bookmark this Post
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 20 Nov 2025
Posts: 105,414
Own Kudos:
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,414
Kudos: 778,493
Kudos
Add Kudos
Bookmarks
Bookmark this Post
avatar
Jahfors
Joined: 26 Sep 2016
Last visit: 22 Aug 2022
Posts: 6
Given Kudos: 14
Posts: 6
Kudos: 0
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 20 Nov 2025
Posts: 105,414
Own Kudos:
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,414
Kudos: 778,493
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Jahfors
Bunuel, hello!
If I am not mistaken we are looking for average. So if we have that sum everywhere is 6, then average is two, isnt it?



Bunuel
Official Solution:


Since the average of \(x\), \(y\), and \(z\) is the sum of the three variables, divided by 3, we can rephrase the question as "what is the value of \(x + y + z\)?" We also note the restrictions on the possible values of \(x\), \(y\), and \(z\) - the variables must be integers in ascending order from \(x\) to \(z\) (not necessarily consecutive). Moreover, they must be different integers, since the inequality \(x \lt y \lt z\) indicates no equality among any of the variables. We note these conditions, but at this stage there is no simple way to apply them in a further rephrasing of the question.

Statement (2): INSUFFICIENT. We start with statement (2), which is the easier statement (it only contains 2 of the 3 variables). We can quickly come up with sets of values that satisfy this statement and the given conditions but that have different sums (or averages). For instance, the set \(x = 0\), \(y = 1\), and \(z = 2\) meets all conditions \((x + z = 2 \lt 3\), all variables are integers and in ascending order), with \(x + y + z = 3\). Another set (\(x = -1\), \(y = 0\), and \(z = 1\)) also meets all conditions but sums to 0. Thus, there is no single value determined by this statement.

Statement (1): INSUFFICIENT. The equation states that \(x + y\) (which must be an integer) multiplied by \(z\) (another integer) equals 5. Since 5 is a prime number, there are only 2 pairs of integers that multiply together to 5: 1 and 5, and -1 and -5. (Don't forget about the negative possibilities). Keeping the conditions that \(x \lt y \lt z\), we can construct the only sets that work:

\(x + y = 1\) and \(z = 5\) (There's no way to assign \(z = 1\) and \(x + y = 5\) while preserving \(x \lt y \lt z\).)

\(x = 0\), \(y = 1\), \(z = 5\), \(sum = 6\)

\(x = -1\), \(y = 2\), \(z = 5\), \(sum = 6\)

\(x = -2\), \(y = 3\), \(z = 5\), \(sum = 6\)

\(x = -3\), \(y = 4\), \(z = 5\), \(sum = 6\)

\(x + y = -5\) and \(z = -1\)

\(x = -3\), \(y = -2\), \(z = -1\), \(sum = -6\)

Since there are 2 possible sums, this statement is insufficient.

Statements (1) and (2) together: INSUFFICIENT. Using the sets determined with Statement (1), we check the value of \(x + z\) for each case, keeping only the cases in which \(x + z\) is less than 3. Two cases remain.

Case 1: \(x = -3\), \(y = 4\), \(z = 5\), \(x + z = 2 \lt 3\), \(x + y + z = 6\)

Case 2: \(x = -3\), \(y = -2\), \(z = -1\), \(x + z = -4 \lt 3\), \(x + y + z = -6\)

Since the two cases yield different sums, we cannot determine a single value for that sum.


Answer: E

In once case the sum is 6 and in another case the sum is -6:

Case 1: \(x = -3\), \(y = 4\), \(z = 5\) --> \(x + y + z = 6\) --> the average = 6/3 = 2.

Case 2: \(x = -3\), \(y = -2\), \(z = -1\) --> \(x + y + z = -6\) --> the average = -6/3 = -2.
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 38,598
Own Kudos:
Posts: 38,598
Kudos: 1,079
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Moderator:
Math Expert
105414 posts