It is currently 19 Nov 2017, 07:35

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

Tanya prepared 4 different letters to 4 different addresses. For each

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
1 KUDOS received
Retired Moderator
avatar
Joined: 27 Aug 2012
Posts: 1184

Kudos [?]: 1958 [1], given: 152

Premium Member
Tanya prepared 4 different letters to 4 different addresses. For each [#permalink]

Show Tags

New post 31 Aug 2013, 00:33
1
This post received
KUDOS
7
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  95% (hard)

Question Stats:

46% (01:03) correct 54% (01:22) wrong based on 706 sessions

HideShow timer Statistics

Tanya prepared 4 different letters to 4 different addresses. For each letter, she prepared one envelope with its correct address. If the 4 letters are to be put into the four envelopes at random, what is the probability that only one letter will be put into the envelope with its correct address?

A) 1/24
B) 1/8
C) 1/4
D) 1/3
E) 3/8
[Reveal] Spoiler: OA

_________________

UPDATED : e-GMAT SC Resources-Consolidated || ALL RC Resources-Consolidated || ALL SC Resources-Consolidated || UPDATED : AWA compilations-109 Analysis of Argument Essays || GMAC's IR Prep Tool

Calling all Columbia (CBS) MBA Applicants: (2018 Intake) Class of 2020 !!! NEW !!!

GMAT Club guide - OG 11-12-13 || Veritas Blog || Manhattan GMAT Blog


KUDOS please, if you like the post or if it helps :-)

Kudos [?]: 1958 [1], given: 152

Expert Post
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42247

Kudos [?]: 132677 [0], given: 12331

Re: Tanya prepared 4 different letters to 4 different addresses. For each [#permalink]

Show Tags

New post 31 Aug 2013, 06:35
Expert's post
1
This post was
BOOKMARKED
bagdbmba wrote:
Hi Guys,
Can anybody shot an explanation to my query raised above ? :(

I'd much appreciate if any Quant expert kindly explain this issue to me!


This case is solved in the following way:
Counting all incorrect, or 0 correct:
P(all incorrect)=1-(1 correct)-(2 correct)-(3 correct)-(4 correct)=1-8/24-6/24-0-1/24=9/24.

Don;t know what I can add to that...
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 132677 [0], given: 12331

Retired Moderator
avatar
Joined: 27 Aug 2012
Posts: 1184

Kudos [?]: 1958 [0], given: 152

Premium Member
Re: Tanya prepared 4 different letters to 4 different addresses. For each [#permalink]

Show Tags

New post 31 Aug 2013, 10:51

Kudos [?]: 1958 [0], given: 152

5 KUDOS received
Intern
Intern
avatar
Joined: 09 Jul 2012
Posts: 11

Kudos [?]: 9 [5], given: 6

Re: Tanya prepared 4 different letters to 4 different addresses. For each [#permalink]

Show Tags

New post 15 Sep 2013, 12:23
5
This post received
KUDOS
1
This post was
BOOKMARKED
We are trying to find the probability of 1R3W.

Probability = number of ways to get 1R3W/number of ways total

number of ways total is 4! = 24. Imagine stuffing envelopes randomly. Stacy can put any of 4 letters into the first envelope, any of the remaining 3 into the next, either of the remaining 2 into the next, and has no choice to make on the last, or 4*3*2*1.

number of ways to get 1R3W : She could fill the first envelope with the right letter (1 way), then put either of the 2 wrong remaining letters in the next (2 ways), then put a wrong letter in the next (1 way). That's 1*2*1*1 = 2.

But since it doesn't have to be the first envelope that has the Right letter, it could be any of the 4 envelopes (i.e. we could have RWWW, WRWW, WWRW, WWWR), the total ways to get 1R3W is 4*2 = 8.

Probability is 8/24 = 1/3.

Kudos [?]: 9 [5], given: 6

Current Student
User avatar
Joined: 06 Sep 2013
Posts: 1972

Kudos [?]: 741 [0], given: 355

Concentration: Finance
GMAT ToolKit User
Re: Tanya prepared 4 different letters to 4 different addresses. For each [#permalink]

Show Tags

New post 21 May 2014, 05:35
Aximili85 wrote:
GODSPEED wrote:
My 2 cents:

For 1 letter to go in right envelope - probability = 1/4
For 2nd letter to go in wrong envelope - probability = 2/3
For 3rd letter to go in wrong envelope - probability = 1/2
For 4th letter to go in wrong envelope - probability = 1

Now, in the order this arrangement can be done:
C - Letter going into correct envelope
W - Letter going into wrong envelope

No#1. C - W - W - W
............in correct envelope: 4* (1/4) * (2/3) * (1/2) * 1 = 1/3


Thats the only explanation i was able to understand =(
I'm worried because if I don't learn the combinatrics formula way of doing it I might make a logical inconsistency while solving under a time limit.


Just wondering, is the above method correct? What if the correct is not the first one? Does it change the procedure?

Please advice
Cheers!
J :)

Kudos [?]: 741 [0], given: 355

Current Student
User avatar
Joined: 06 Sep 2013
Posts: 1972

Kudos [?]: 741 [0], given: 355

Concentration: Finance
GMAT ToolKit User
Re: Tanya prepared 4 different letters to 4 different addresses. For each [#permalink]

Show Tags

New post 21 May 2014, 05:35
Aximili85 wrote:
GODSPEED wrote:
My 2 cents:

For 1 letter to go in right envelope - probability = 1/4
For 2nd letter to go in wrong envelope - probability = 2/3
For 3rd letter to go in wrong envelope - probability = 1/2
For 4th letter to go in wrong envelope - probability = 1

Now, in the order this arrangement can be done:
C - Letter going into correct envelope
W - Letter going into wrong envelope

No#1. C - W - W - W
............in correct envelope: 4* (1/4) * (2/3) * (1/2) * 1 = 1/3


Thats the only explanation i was able to understand =(
I'm worried because if I don't learn the combinatrics formula way of doing it I might make a logical inconsistency while solving under a time limit.


Just wondering, is the above method correct? What if the correct is not the first one? Does it change the procedure?

Please advice
Cheers!
J :)

Kudos [?]: 741 [0], given: 355

Current Student
avatar
B
Joined: 13 Feb 2011
Posts: 104

Kudos [?]: 49 [0], given: 3385

GMAT ToolKit User
Re: Tanya prepared 4 different letters to 4 different addresses. For each [#permalink]

Show Tags

New post 20 Sep 2014, 17:21
jlgdr wrote:
Just wondering, is the above method correct? What if the correct is not the first one? Does it change the procedure?

Please advice
Cheers!
J :)

I actually had the same question and was about to post a reply on this thread seeking same but while typing it had the aha moment. :)

Yes, even when one calculates the probability of each scenario separately, the total will be \(\frac{1}{3}\).
#1 - C W W W - \(\frac{1}{4}*\frac{2}{3}*\frac{1}{2}*1=\frac{1}{12}\)
#2 - W C W W - \(\frac{2}{4}*\frac{1}{3}*\frac{1}{2}*1=\frac{1}{12}\) (Note for the first W, desired outcomes are only two, the 3rd and 4th envelopes, and doesn't include its own envelope and the envelope for the second letter as that needs to have the correct one. Same explanation plays in scenarios #3 and #4)
#3 - W W C W - \(\frac{2}{4}*\frac{1}{3}*\frac{1}{2}*1=\frac{1}{12}\)
#4 - W W W C - \(\frac{2}{4}*\frac{1}{3}*\frac{1}{2}*1=\frac{1}{12}\)

Kudos [?]: 49 [0], given: 3385

2 KUDOS received
Chat Moderator
User avatar
Joined: 19 Apr 2013
Posts: 687

Kudos [?]: 171 [2], given: 537

Concentration: Strategy, Healthcare
Schools: Sloan '18 (A)
GMAT 1: 730 Q48 V41
GPA: 4
GMAT ToolKit User Premium Member
Re: Tanya prepared 4 different letters to 4 different addresses. For each [#permalink]

Show Tags

New post 01 Dec 2014, 03:09
2
This post received
KUDOS
Dienekes wrote:
jlgdr wrote:
Just wondering, is the above method correct? What if the correct is not the first one? Does it change the procedure?

Please advice
Cheers!
J :)

I actually had the same question and was about to post a reply on this thread seeking same but while typing it had the aha moment. :)

Yes, even when one calculates the probability of each scenario separately, the total will be \(\frac{1}{3}\).
#1 - C W W W - \(\frac{1}{4}*\frac{2}{3}*\frac{1}{2}*1=\frac{1}{12}\)
#2 - W C W W - \(\frac{2}{4}*\frac{1}{3}*\frac{1}{2}*1=\frac{1}{12}\) (Note for the first W, desired outcomes are only two, the 3rd and 4th envelopes, and doesn't include its own envelope and the envelope for the second letter as that needs to have the correct one. Same explanation plays in scenarios #3 and #4)
#3 - W W C W - \(\frac{2}{4}*\frac{1}{3}*\frac{1}{2}*1=\frac{1}{12}\)
#4 - W W W C - \(\frac{2}{4}*\frac{1}{3}*\frac{1}{2}*1=\frac{1}{12}\)

Bunuel, can you check this post, pls. I think there are mistakes in calculations of 2nd, 3rd, and 4th conditions. For the first W I think there must 3/4. Am I right?
_________________

If my post was helpful, press Kudos. If not, then just press Kudos !!!

Kudos [?]: 171 [2], given: 537

Director
Director
User avatar
Joined: 07 Aug 2011
Posts: 579

Kudos [?]: 546 [0], given: 75

Concentration: International Business, Technology
GMAT 1: 630 Q49 V27
GMAT ToolKit User
Re: Tanya prepared 4 different letters to 4 different addresses. For each [#permalink]

Show Tags

New post 14 Mar 2015, 10:53
Bunuel wrote:
dk94588 wrote:
Hello, this was on GMATprep, and I have had problems with this type of question before, but maybe you could help me solve it.

Tanya prepared 4 different letters to 4 different addresses. For each letter, she prepared one envelope with its correct address. If the 4 letters are to be put into the four envelopes at random, what is the probability that only one letter will be put into the envelope with its correct address?

A) 1/24
B) 1/8
C) 1/4
D) 1/3
E) 3/8


Total # of ways of assigning 4 letters to 4 envelopes is \(4!=24\).

Only one letter in the right envelope: 4(# of envelopes)*2(# of ways possible to arrange 3 letters incorrectly in the envelopes, when one is correct).

ABCD(envelopes)
ACDB(letters)
ADBC(letters)
(When A is in the right envelope other three have only 2 possible incorrect arrangements)
As we have 4 letters, total # of ways 4*2=8

\(P(C=1)=\frac{8}{24}=\frac{1}{3}\)

Answer: D.

All other possible scenarios: letter-arrangements-understanding-probability-and-combinats-84912.html

Hope it's clear.


Hi Bunuel,
what if there were 5 letters and we were asked to find the same probability as in the original question , how would we calculate these possible wrong arrangements using combitronics ?
(When A is in the right envelope other three have only 2 possible incorrect arrangements)
ABCDE
Total arrangements for BCDE=4!
case 1: only 2 wrong : 4
case 2: three wrong : X
so all wrong will be 4!-4 -X ?

could you please help .

thanks
lucky
_________________

Thanks,
Lucky

_______________________________________________________
Kindly press the Image to appreciate my post !! :-)

Kudos [?]: 546 [0], given: 75

VP
VP
avatar
S
Joined: 09 Jun 2010
Posts: 1395

Kudos [?]: 168 [0], given: 916

Re: Tanya prepared 4 different letters to 4 different addresses. For each [#permalink]

Show Tags

New post 07 Jun 2015, 02:15
hard question, but if you do this two time, second time one month after first time, you can remember

I try to do this one for 3 times.
now I master this problem
_________________

visit my facebook to help me.
on facebook, my name is: thang thang thang

Kudos [?]: 168 [0], given: 916

Intern
Intern
avatar
Joined: 10 Jun 2015
Posts: 20

Kudos [?]: 2 [0], given: 9

Concentration: Marketing, Technology
GMAT 1: 490 Q47 V13
Re: Tanya prepared 4 different letters to 4 different addresses. For each [#permalink]

Show Tags

New post 21 Jan 2016, 12:18
1
This post was
BOOKMARKED
GMATGuruNY wrote:
dk94588 wrote:
Hello, this was on GMATprep, and I have had problems with this type of question before, but maybe you could help me solve it.

Tanya prepared 4 different letters to 4 different addresses. For each letter, she prepared one envelope with its correct address. If the 4 letters are to be put into the four envelopes at random, what is the probability that only one letter will be put into the envelope with its correct address?

A) 1/24
B) 1/8
C) 1/4
D) 1/3
E) 3/8


Let's call the envelopes E1, E2, E3 and E4.

P(only E1 gets the correct letter):

P(E1 gets the correct letter) = 1/4 (4 letters total, 1 of them correct)
P(E2 gets the wrong letter) = 2/3 (3 letters left, 2 of them wrong)
P(E3 gets the wrong letter) = 1/2 (2 letters left, 1 of them wrong)
P(E4 gets the wrong letter) = 1/1 (1 letter left, and it must be wrong since we placed the correct letter in either E2 or E3)

Since we need all of these events to happen, we multiply the fractions:

1/4 * 2/3 * 1/2 * 1/1 = 1/12.

Since each envelope has the same probability of getting the correct letter and we have 4 envelopes total, we need to multiply by 4:

4 * 1/12 = 1/3.

The correct answer is
[Reveal] Spoiler:
D
.


I find your solution, the best among all. Thanks.
_________________

Abhilash
Learn, Apply, Fail, Analyse, and Practice.

Consider +1 Kudos if you find my post helpful.

Kudos [?]: 2 [0], given: 9

Non-Human User
User avatar
Joined: 09 Sep 2013
Posts: 15690

Kudos [?]: 282 [0], given: 0

Premium Member
Re: Tanya prepared 4 different letters to 4 different addresses. For each [#permalink]

Show Tags

New post 28 Feb 2017, 02:02
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

Kudos [?]: 282 [0], given: 0

Expert Post
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42247

Kudos [?]: 132677 [0], given: 12331

Re: Tanya prepared 4 different letters to 4 different addresses. For each [#permalink]

Show Tags

New post 17 Jun 2017, 05:13
bagdbmba wrote:
Tanya prepared 4 different letters to 4 different addresses. For each letter, she prepared one envelope with its correct address. If the 4 letters are to be put into the four envelopes at random, what is the probability that only one letter will be put into the envelope with its correct address?

A) 1/24
B) 1/8
C) 1/4
D) 1/3
E) 3/8


OPEN DISCUSSION OF THIS QUESTION IS HERE: https://gmatclub.com/forum/tanya-prepar ... 85167.html
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 132677 [0], given: 12331

Re: Tanya prepared 4 different letters to 4 different addresses. For each   [#permalink] 17 Jun 2017, 05:13
Display posts from previous: Sort by

Tanya prepared 4 different letters to 4 different addresses. For each

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.