MathRevolution wrote:

[

Math Revolution GMAT math practice question]

Attachment:

11.11.png

The above figure shows a sector of a circle. What is the area of the sector?

\(1) x = 120^o\)

\(2) AB=6√3\)

(We assume - as part of the definition of a sector a circle - that the "origin" of the angle x shown in the figure is the center of the circle.)

The variable R will denote the radius of the circle. All angles are measured in degrees.

\(? = \frac{{x\,}}{{360\,}}\left( {\pi {R^{\,2}}} \right)\)

\(x = 120\,\,\,\left( {{\text{both}}\,\,{\text{figures}}} \right)\)

\(AB = 6\sqrt 3 \,\,\,\left( {{\text{both}}\,\,{\text{figures}}} \right)\)

\(x = 90\,\,\,\mathop {\,\,\, \Rightarrow \,\,\,\,}\limits^{L\,,\,L\,,\,L\sqrt 2 } \,\,\,R\sqrt 2 = 6\sqrt 3 \,\,\,\,\,\,\mathop \Rightarrow \limits^{ \cdot \,\,\frac{{\sqrt 2 }}{2}\,} \,\,\,\,\,R = 3\sqrt 6 \,\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,\,\,\,?\,\,\, = \,\,\,\frac{1}{4}\,\left( {\pi \, \cdot 9 \cdot 6} \right)\)

\(x = 120\,\,\,\mathop \Rightarrow \limits_{\left( * \right)}^{30\,,\,60\,,\,90\,\,} \,\,\,\,?\,\,\, = \,\,\,\frac{1}{3}\,\left( {\pi \, \cdot 36} \right)\,\,\, = 12\pi \,\,\, \ne \,\,\,\,\frac{1}{4}\,\left( {\pi \, \cdot 9 \cdot 6} \right)\,\,\,\,\,\,\)

\(\left( * \right)\,\,30\,,\,60\,,\,90\,\,\,\, \Rightarrow \,\,\,\,\left\{ \begin{gathered}

\,L\sqrt 3 \,\,\, = \,\,\frac{{6\sqrt 3 }}{2} \hfill \\

\,2L = R \hfill \\

\end{gathered} \right.\,\,\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,R = 6\)

\(\left( {1 + 2} \right)\,\,\,?\,\, = \,\,12\pi \,\,\,\left( {{\text{shown}}\,\,{\text{above}}} \right)\)

This solution follows the notations and rationale taught in the GMATH method.

Regards,

Fabio.

_________________

Fabio Skilnik :: GMATH method creator (Math for the GMAT)

Our high-level "quant" preparation starts here: https://gmath.net