GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 15 Aug 2018, 21:18

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

The Discreet Charm of the DS

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 47920
Re: The Discreet Charm of the DS  [#permalink]

Show Tags

New post 10 Jun 2017, 12:47
KARISHMA315 wrote:
Bunuel wrote:
5. What is the value of integer x?

(1) 2x^2+9<9x --> factor qudratics: \((x-\frac{3}{2})(x-3)<0\) --> roots are \(\frac{3}{2}\) and 3 --> "<" sign indicates that the solution lies between the roots: \(1.5<x<3\) --> since there only integer in this range is 2 then \(x=2\). Sufficient.

(2) |x+10|=2x+8 --> LHS is an absolute value, which is always non negative, hence RHS must also be non-negative: \(2x+8\geq{0}\) --> \(x\geq{-4}\), for this range \(x+10\) is positive hence \(|x+10|=x+10\) --> \(x+10=2x+8\) --> \(x=2\). Sufficient.

Answer: D.



Hi Bunuel, a small doubt instead of \(2x+8\geq{0}\) --> \(x\geq{-4}\) this logic if we take |x+10| to be both positive and negative we get 2 vale by solving equation x=2 and x=-6. however by putting values back in eqtn we can see that only for x=2 equation is satisfying. Is this correct approach?


Yes, that's also a correct way of solving. Good thing you did is that you did not forget to test both values after you got them.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Intern
Intern
avatar
B
Joined: 16 Feb 2017
Posts: 2
GMAT 1: 730 Q49 V41
Reviews Badge
Re: The Discreet Charm of the DS  [#permalink]

Show Tags

New post 06 Sep 2017, 00:43
Bunuel wrote:
11. If x and y are integers, is x a positive integer?

(1) x*|y| is a prime number --> since only positive numbers can be primes, then: x*|y|=positive --> x=positive. Sufficient

(2) x*|y| is non-negative integer. Notice that we are told that x*|y| is non-negative, not that it's positive, so x can be positive as well as zero. Not sufficient.

Answer: A.


Hi Bunuel,

I understood that x*|y|=positive; but if y<=0 then |y|=-y and in this case x can be negative.
Am I missing something?

Thanks.
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 47920
Re: The Discreet Charm of the DS  [#permalink]

Show Tags

New post 06 Sep 2017, 00:49
1
Yashodhan123 wrote:
Bunuel wrote:
11. If x and y are integers, is x a positive integer?

(1) x*|y| is a prime number --> since only positive numbers can be primes, then: x*|y|=positive --> x=positive. Sufficient

(2) x*|y| is non-negative integer. Notice that we are told that x*|y| is non-negative, not that it's positive, so x can be positive as well as zero. Not sufficient.

Answer: A.


Hi Bunuel,

I understood that x*|y|=positive; but if y<=0 then |y|=-y and in this case x can be negative.
Am I missing something?

Thanks.


Yes.

An absolute value of a number cannot be negative: |a| is positive or 0, no matter whether a itself is negative or not.

If y <= 0, then |y| = -y, yes, but even in this case -y = -negative = positive.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Intern
Intern
avatar
B
Joined: 21 Mar 2012
Posts: 22
Location: India
GMAT 1: 710 Q49 V38
GMAT ToolKit User Reviews Badge
Re: The Discreet Charm of the DS  [#permalink]

Show Tags

New post 08 Jun 2018, 15:04
12. If 6a=3b=7c, what is the value of a+b+c?
(1) ac=6b
(2) 5b=8a+4c


Let 6a=3b=7c=K (where K is a constant)
Thus, a=K/6
b= K/3
c=K/7

Therefore, we need to find the value of K/6 + K/3 + K/7 = 9K/14. OR if we find the value of just K it will give us the answer.

Stmt 1: ac=6b
\(K/6*K/7 = 6*K/3;\)

\(K^2/42-2K=0\)

\(K(K/42-2)=0\)

So, K = 0 or K= 84. NOT Sufficient.

Stmt 2:
5b=8a+4c
5K/3=8K/6 +4K/7
40K/21-5K/3=0
5K/3=0
K=0 SUFFICIENT

Ans. B
Intern
Intern
User avatar
B
Joined: 11 Feb 2013
Posts: 11
GMAT 1: 490 Q44 V15
GMAT 2: 690 Q47 V38
GPA: 3.05
WE: Analyst (Commercial Banking)
GMAT ToolKit User Reviews Badge
Re: The Discreet Charm of the DS  [#permalink]

Show Tags

New post 09 Jun 2018, 01:36
Bunuel wrote:
2. Is xy<=1/2?

(1) x^2+y^2=1. Recall that \((x-y)^2\geq{0}\) (square of any number is more than or equal to zero) --> \(x^2-2xy+y^2\geq{0}\) --> since \(x^2+y^2=1\) then: \(1-2xy\geq{0}\) --> \(xy\leq{\frac{1}{2}}\). Sufficient.

(2) x^2-y^2=0 --> \(|x|=|y|\). Clearly insufficient.

Answer: A.


Dear sir,
Why are not you taking (x+y)^2 >=0 i.e. x^2+y^2+2xy>=0?
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 47920
Re: The Discreet Charm of the DS  [#permalink]

Show Tags

New post 10 Jun 2018, 00:16
BelalHossain046 wrote:
Bunuel wrote:
2. Is xy<=1/2?

(1) x^2+y^2=1. Recall that \((x-y)^2\geq{0}\) (square of any number is more than or equal to zero) --> \(x^2-2xy+y^2\geq{0}\) --> since \(x^2+y^2=1\) then: \(1-2xy\geq{0}\) --> \(xy\leq{\frac{1}{2}}\). Sufficient.

(2) x^2-y^2=0 --> \(|x|=|y|\). Clearly insufficient.

Answer: A.


Dear sir,
Why are not you taking (x+y)^2 >=0 i.e. x^2+y^2+2xy>=0?


The point is that if you consider \((x+y)^2 \ge 0\), you'll get \(xy\geq{-\frac{1}{2}}\), which is not helpful at all. Actually since both \(xy\geq{-\frac{1}{2}}\) (from \((x+y)^2 \ge 0\)) and \(xy \le \frac{1}{2}\) (from \((x-y)^2 \ge 0\)) are true, then we get that \(-\frac{1}{2} \leq{xy} \leq{\frac{1}{2}}\). But only the approach given in the solution above gives you the answer we are looking for, while another one gives you an inequality which is not helpful.

Hope it's clear.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Manager
Manager
avatar
B
Joined: 24 Mar 2018
Posts: 87
Re: The Discreet Charm of the DS  [#permalink]

Show Tags

New post 18 Jul 2018, 05:26
Bunuel wrote:
11. If x and y are integers, is x a positive integer?

(1) x*|y| is a prime number --> since only positive numbers can be primes, then: x*|y|=positive --> x=positive. Sufficient

(2) x*|y| is non-negative integer. Notice that we are told that x*|y| is non-negative, not that it's positive, so x can be positive as well as zero. Not sufficient.

Answer: A.


Shouldn't we consider zero as positive ?
2 is not sufficient as |y| can be zero so x can be negative or positive
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 47920
Re: The Discreet Charm of the DS  [#permalink]

Show Tags

New post 18 Jul 2018, 05:29
1
teaserbae wrote:
Bunuel wrote:
11. If x and y are integers, is x a positive integer?

(1) x*|y| is a prime number --> since only positive numbers can be primes, then: x*|y|=positive --> x=positive. Sufficient

(2) x*|y| is non-negative integer. Notice that we are told that x*|y| is non-negative, not that it's positive, so x can be positive as well as zero. Not sufficient.

Answer: A.


Shouldn't we consider zero as positive ?
2 is not sufficient as |y| can be zero so x can be negative or positive


ZERO.

1. 0 is an integer.

2. 0 is an even integer. An even number is an integer that is "evenly divisible" by 2, i.e., divisible by 2 without a remainder and as zero is evenly divisible by 2 then it must be even.

3. 0 is neither positive nor negative integer (the only one of this kind).

4. 0 is divisible by EVERY integer except 0 itself.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Re: The Discreet Charm of the DS &nbs [#permalink] 18 Jul 2018, 05:29

Go to page   Previous    1   2   3   4   5   6   [ 108 posts ] 

Display posts from previous: Sort by

The Discreet Charm of the DS

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  

Events & Promotions

PREV
NEXT


GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.