Last visit was: 19 Nov 2025, 16:20 It is currently 19 Nov 2025, 16:20
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
bhavinnc
Joined: 07 Dec 2009
Last visit: 11 May 2010
Posts: 4
Own Kudos:
213
 [212]
Given Kudos: 1
Posts: 4
Kudos: 213
 [212]
10
Kudos
Add Kudos
202
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,368
 [62]
32
Kudos
Add Kudos
30
Bookmarks
Bookmark this Post
User avatar
enigma123
Joined: 25 Jun 2011
Last visit: 16 Mar 2016
Posts: 392
Own Kudos:
19,303
 [20]
Given Kudos: 217
Status:Finally Done. Admitted in Kellogg for 2015 intake
Location: United Kingdom
Concentration: International Business, Strategy
GMAT 1: 730 Q49 V45
GPA: 2.9
WE:Information Technology (Consulting)
GMAT 1: 730 Q49 V45
Posts: 392
Kudos: 19,303
 [20]
2
Kudos
Add Kudos
18
Bookmarks
Bookmark this Post
General Discussion
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,368
 [10]
4
Kudos
Add Kudos
6
Bookmarks
Bookmark this Post
enigma123
The function f is defined for all positive integers n by the following rule. f(n) is the number of positive integers each of which is less than n and has no positive factor in common with n other than 1. If p is any prime, number then f(p)=

A. p-1
B. p-2
C. (p+1)/2
D. (p-1)/2
E. 2

Guys - does this questions makes sense to anyone? I am struggling. Does it mean that:

F(n) is a list of positive integers. AM I right?

for e.g f(5) = 3,4.

I am stuck after this. Can someone please help?

If not the wording the question wouldn't be as tough as it is now. The GMAT often hides some simple concept in complicated way of delivering it.

This question for instance basically asks: how many positive integers are less than given prime number p which have no common factor with p except 1.

Well as p is a prime, all positive numbers less than p have no common factors with p (except common factor 1). So there would be p-1 such numbers (as we are looking number of integers less than p).

For example: if p=7 how many numbers are less than 7 having no common factors with 7: 1, 2, 3, 4, 5, 6 --> 7-1=6.

Answer: A.

Hope it's clear.
User avatar
BN1989
Joined: 12 Oct 2011
Last visit: 04 Mar 2014
Posts: 98
Own Kudos:
882
 [2]
Given Kudos: 23
GMAT 1: 700 Q48 V37
GMAT 2: 720 Q48 V40
GMAT 2: 720 Q48 V40
Posts: 98
Kudos: 882
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
But it says no other factors in common with n other than 1, why do we have to include 1 then? I thought since 1 is a factor of 1 itself and p, we cannot include it.
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 19 Nov 2025
Posts: 16,267
Own Kudos:
77,001
 [3]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 77,001
 [3]
3
Kudos
Add Kudos
Bookmarks
Bookmark this Post
BN1989
But it says no other factors in common with n other than 1, why do we have to include 1 then? I thought since 1 is a factor of 1 itself and p, we cannot include it.

Each positive integer should have no factor common with n except 1.
1 also has only a single factor i.e. 1 common with p. So we do include 1.
User avatar
gmat6nplus1
Joined: 04 Oct 2013
Last visit: 09 Jan 2019
Posts: 141
Own Kudos:
678
 [10]
Given Kudos: 29
Concentration: Finance, Leadership
GMAT 1: 590 Q40 V30
GMAT 2: 730 Q49 V40
WE:Project Management (Media/Entertainment)
GMAT 2: 730 Q49 V40
Posts: 141
Kudos: 678
 [10]
7
Kudos
Add Kudos
3
Bookmarks
Bookmark this Post
Okay let's see what happens here.

It took me 20 seconds to understand what the question was precisely asking for. But this is the most important step; do not attempt anything if you don't understand throughly the question.

What I figured is that the definition of "relatively prime" was pretty close to the description assigned to the question.

Two different numbers are said to be relatively prime whenever their GCF=1.

Let's pick a random example: how many numbers less than 105 are relatively prime to 105?

105=3(5)7 then the total number of relatively primes will be: 105(1-1/3)(1-1/5)(1-1/7)=48

Let's apply the same logic to our question and consider a random prime number: p(1-1/p)= p-1 which turns out to be the correct answer.
User avatar
mvictor
User avatar
Board of Directors
Joined: 17 Jul 2014
Last visit: 14 Jul 2021
Posts: 2,124
Own Kudos:
Given Kudos: 236
Location: United States (IL)
Concentration: Finance, Economics
GMAT 1: 650 Q49 V30
GPA: 3.92
WE:General Management (Transportation)
Products:
GMAT 1: 650 Q49 V30
Posts: 2,124
Kudos: 1,263
Kudos
Add Kudos
Bookmarks
Bookmark this Post
well damn...the wording is indeed confusing..as I was thinking that f(n) is the sum of the all numbers..
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 19 Nov 2025
Posts: 16,267
Own Kudos:
77,001
 [7]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 77,001
 [7]
3
Kudos
Add Kudos
4
Bookmarks
Bookmark this Post
mvictor
well damn...the wording is indeed confusing..as I was thinking that f(n) is the sum of the all numbers..


In such questions, it is advisable to take an example to figure out what the question is saying.

"The function f is defined for all the positive integers n by the following rule:"

We are looking at all positive integers so say n is 3.


"f(n) is the number of positive integers each of which is less than n and has no positive factor in common with n other than 1 . "

Positive integers less than n -> 1, 2
Both do not have a factor in common with 3.
So f(n) = 2 (number of integers which have nothing in common with n except 1)

"if p is a prime number then f(p)?"

p must be a prime number. Our previous example was a prime number. Let's take another say 5.
Positive integers less than 5 -> 1, 2,3, 4
All 4 integers will have no factor in common with 5 because 5 is prime.
f(5) = 4

This will be the case with all prime numbers. Since a prime has no factor in common (except 1) with all positive integers less than it,
f(p) = p - 1

Answer (A)
User avatar
EMPOWERgmatRichC
User avatar
Major Poster
Joined: 19 Dec 2014
Last visit: 31 Dec 2023
Posts: 21,784
Own Kudos:
Given Kudos: 450
Status:GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Expert
Expert reply
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Posts: 21,784
Kudos: 12,807
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hi All,

This question is meant to ask: "If P is a prime number, then f(P)= ?" This question can be solved by TESTing VALUES.

Let's TEST N=7. The f(7) = all the positive integers less than 7 that have no factor in common with 7 except for 1.

THAT list is 1, 2, 3, 4, 5, 6 = 6 terms.

Thus, we're looking for an answer that equals 6 when we plug N=7 into it. There's only one answer that matches...

Final Answer:
GMAT assassins aren't born, they're made,
Rich
User avatar
GMATGuruNY
Joined: 04 Aug 2010
Last visit: 18 Nov 2025
Posts: 1,344
Own Kudos:
3,796
 [1]
Given Kudos: 9
Schools:Dartmouth College
Expert
Expert reply
Posts: 1,344
Kudos: 3,796
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
bhavinnc
The function F is defined for all positive integers n by the following rule: f(n) is the number of positive integer each of which is less than n, and has no positive factor in common with n other than 1. If p is any prime number then f(p)=

A. p-1
B. p-2
C. (p+1)/2
D. (p-1)/2
E. 2

Since p can be ANY PRIME NUMBER, let p=2.
In this case:
f(p) = f(2) = the number of positive integers less than 2 that have no factor in common with 2.
Since only ONE positive integer is less than 2, f(2) = 1.
The correct answer must yield 1 when p=2.
Only A works:
p-1 = 2-1 = 1

User avatar
ScottTargetTestPrep
User avatar
Target Test Prep Representative
Joined: 14 Oct 2015
Last visit: 19 Nov 2025
Posts: 21,716
Own Kudos:
Given Kudos: 300
Status:Founder & CEO
Affiliations: Target Test Prep
Location: United States (CA)
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 21,716
Kudos: 26,997
Kudos
Add Kudos
Bookmarks
Bookmark this Post
bhavinnc
The function F is defined for all positive integers n by the following rule: f(n) is the number of positive integer each of which is less than n, and has no positive factor in common with n other than 1. If p is any prime number then f(p)=

A. p-1
B. p-2
C. (p+1)/2
D. (p-1)/2
E. 2


We can see that, in other words, f(n) is the number of positive integers less than n that are relatively prime to n. If p is a prime, then any positive integer less than p will be relatively prime to p. For example, if p = 7, then f(7) = 6 since 1, 2, 3, 4, 5, and 6 are all relatively prime to 7. Therefore, f(p) = p - 1.

Answer: A
User avatar
Fdambro294
Joined: 10 Jul 2019
Last visit: 20 Aug 2025
Posts: 1,350
Own Kudos:
Given Kudos: 1,656
Posts: 1,350
Kudos: 742
Kudos
Add Kudos
Bookmarks
Bookmark this Post
I read that the GMAT has been doing this lately.


They take actual theorems or formula from areas of math outside the scope of the test, define them, and use them as a “function” question.

The function described in the problem is called the “Euler Number”: how many Integers less than N are Co-Prime with N (I.e., do not share any factors).

For instance, to find the Euler number of 25, you would pull out all the integers less than 25 that share any prime factors with 25.

Euler number of 25 = 25 * (1 - (1/5) = 25 * 4/5 = 20

There are 20 numbers less than 25 that do not share any prime factors with 25—- only 1

Note: 1 is co-prime with every integer

For any Prime number that is only divisible by 1 and itself (P) ———> every number less than P will be Co-Prime with P

P - 1

Posted from my mobile device
User avatar
CEdward
Joined: 11 Aug 2020
Last visit: 14 Apr 2022
Posts: 1,203
Own Kudos:
Given Kudos: 332
Posts: 1,203
Kudos: 272
Kudos
Add Kudos
Bookmarks
Bookmark this Post
The function F is defined for all positive integers n by the following rule: f(n) is the number of positive integer each of which is less than n, and has no positive factor in common with n other than 1. If p is any prime number then f(p)=

A. p-1
B. p-2
C. (p+1)/2
D. (p-1)/2
E. 2

Find a pattern.

p is prime.

p = 2 --> f(2) = 1 (Why? 1 is the only factor that is POSITIVE and LESS THAN 2)
p = 3 --> f(3) = 2 (Factors: 1, 2)
p = 5 --> f(5) = 4 (1,2,3,4)
p = 7 --> f(7) = 6 (1,2,3,4,5,6)

Notice that the number of factors is always less than the prime number itself

p - 1

A.
User avatar
dpchen
Joined: 03 Jul 2017
Last visit: 01 Apr 2024
Posts: 5
Own Kudos:
Given Kudos: 8
Posts: 5
Kudos: 95
Kudos
Add Kudos
Bookmarks
Bookmark this Post
bhavinnc
The function F is defined for all positive integers n by the following rule: f(n) is the number of positive integers each of which is less than n and has no positive factor in common with n other than 1. If p is any number then f(p) =

A. p - 1
B. p - 2
C. (p + 1)/2
D. (p - 1)/2
E. 2

The question currently says "If p is any number" instead of "If p is any prime number".
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,368
Kudos
Add Kudos
Bookmarks
Bookmark this Post
dpchen
bhavinnc
The function F is defined for all positive integers n by the following rule: f(n) is the number of positive integers each of which is less than n and has no positive factor in common with n other than 1. If p is any number then f(p) =

A. p - 1
B. p - 2
C. (p + 1)/2
D. (p - 1)/2
E. 2

The question currently says "If p is any number" instead of "If p is any prime number".

Fixed the typo. Thank you!
avatar
ManifestDreamMBA
Joined: 17 Sep 2024
Last visit: 19 Nov 2025
Posts: 1,284
Own Kudos:
Given Kudos: 236
Products:
Posts: 1,284
Kudos: 785
Kudos
Add Kudos
Bookmarks
Bookmark this Post
p is any prime number then f(p), then number of positive integers each of which is less than p with no positive factor in common with p other than 1, will be all numbers but p
f(p) = p-1

For example is p = 5, then the numbers satisfying the condition are 1,2,3,4. f(5) = 4, i.e. 5-1 = 4

Answer A
bhavinnc
The function F is defined for all positive integers n by the following rule: f(n) is the number of positive integers each of which is less than n and has no positive factor in common with n other than 1. If p is any prime number then f(p) =

A. p - 1
B. p - 2
C. (p + 1)/2
D. (p - 1)/2
E. 2
Moderators:
Math Expert
105390 posts
Tuck School Moderator
805 posts