GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 17 Jul 2018, 10:42

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

The number m yields a remainder p when divided by 14 and a remainder q

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

1 KUDOS received
Intern
Intern
avatar
Joined: 26 Jul 2015
Posts: 17
GMAT ToolKit User
The number m yields a remainder p when divided by 14 and a remainder q [#permalink]

Show Tags

New post Updated on: 02 Aug 2015, 16:54
1
6
00:00
A
B
C
D
E

Difficulty:

  35% (medium)

Question Stats:

72% (01:52) correct 28% (02:41) wrong based on 124 sessions

HideShow timer Statistics

The number m yields a remainder p when divided by 14 and a remainder q when divided by 7. If p = q + 7, then which one of the following could be the value of m ?

(A) 45
(B) 53
(C) 72
(D) 85
(E) 100

I'm looking for an algebraic solution to this question. This question is from Nova GMAT Math Bible. I can evaluate the answer choices individually and arrive at the correct answer but I would like to know how to solve this problem without substituting numbers.

Aside from dividing each choice by 7 and 14 and evaluating the remainders with p = q + 7, I tried the following method.

The question states that m = 14*a + p and m = 7*b + q, and that p = q + 7.
Therefore, m = 14*a + q + 7 = 7*b + q
Solving this through, I get b = 2*a + 1

Using a = 0, 1, 2... I get the following values for m:
q + 7, 14 + q + 7 = q + 21, 28 + q + 7 = q + 35, ...

Using b = 1, 3, 5... I get the same results for m since we used b = 2*a + 1:
q + 7, q + 21, q + 35, ... q + 91, q + 105, ...

I know that remainders can only be 0, 1, 2, ... 6 when dividing by 7.

From here on out, I could see that:
45 -> 35 + 10
53 -> 49 + 4
72 -> 63 + 9
85 -> 77 + 8
100 -> 91 + 9

And that's how I would pick 53, again relying on the choices given.

And that's the extent of my progress in analyzing this problem. You can see that I did not get very far in coming up with an elegant solution. Hoping the seasoned GMAT math pros can help me out. Thank you!

Originally posted by jhabib on 02 Aug 2015, 15:39.
Last edited by ENGRTOMBA2018 on 02 Aug 2015, 16:54, edited 2 times in total.
Formatted the question
2 KUDOS received
Current Student
avatar
S
Joined: 20 Mar 2014
Posts: 2641
Concentration: Finance, Strategy
Schools: Kellogg '18 (M)
GMAT 1: 750 Q49 V44
GPA: 3.7
WE: Engineering (Aerospace and Defense)
GMAT ToolKit User Premium Member Reviews Badge
The number m yields a remainder p when divided by 14 and a remainder q [#permalink]

Show Tags

New post 02 Aug 2015, 17:02
2
1
jhabib wrote:
The number m yields a remainder p when divided by 14 and a remainder q when divided by 7. If p = q + 7, then which one of the following could be the value of m ?

(A) 45
(B) 53
(C) 72
(D) 85
(E) 100

I'm looking for an algebraic solution to this question. This question is from Nova GMAT Math Bible. I can evaluate the answer choices individually and arrive at the correct answer but I would like to know how to solve this problem without substituting numbers.

Aside from dividing each choice by 7 and 14 and evaluating the remainders with p = q + 7, I tried the following method.

The question states that m = 14*a + p and m = 7*b + q, and that p = q + 7.
Therefore, m = 14*a + q + 7 = 7*b + q
Solving this through, I get b = 2*a + 1

Using a = 0, 1, 2... I get the following values for m:
q + 7, 14 + q + 7 = q + 21, 28 + q + 7 = q + 35, ...

Using b = 1, 3, 5... I get the same results for m since we used b = 2*a + 1:
q + 7, q + 21, q + 35, ... q + 91, q + 105, ...

I know that remainders can only be 0, 1, 2, ... 6 when dividing by 7.

From here on out, I could see that:
45 -> 35 + 10
53 -> 49 + 4
72 -> 63 + 9
85 -> 77 + 8
100 -> 91 + 9


And that's how I would pick 53, again relying on the choices given.

And that's the extent of my progress in analyzing this problem. You can see that I did not get very far in coming up with an elegant solution. Hoping the seasoned GMAT math pros can help me out. Thank you!



A couple of points before I talk about the question:

1. Please format your question properly.
2. Do not add your own analyses or the correct answer or any sort of explanation. This will prevent people who want to solve the question before looking at the OA. If you want to mention your analysis either you can write it in the next post or hide it by putting it as "spoiler" as I have done above.

I am no seasoned GMAT Pro, but will give it a shot. You have done it correctly by finding \(b = 2a+1 = odd\) but the text above in red is incorrect as remainder when a number is divided by 7 can not be > 7.

Once you know that b = 2a+1 = odd, m = odd multiple of 7 + remainder (0-6) . This is the point for eliminating options as shown below:

The choices should be rewritten as:

45 -> 7*6+3 : Reject as it is an even multiple of 7 + rem
53 -> 7*7 + 4 : Keep this as it is an odd multiple of 7 + rem
72 -> 7*10 + 2 : Reject as it is an even multiple of 7 + rem
85 -> 7*12 + 1 : Reject as it is an even multiple of 7 + rem
100 -> 7*14 + 2 : Reject as it is an even multiple of 7 + rem

Only 1 choice is remaining and is thus the correct answer.
Manager
Manager
avatar
Joined: 06 Jun 2014
Posts: 51
Re: The number m yields a remainder p when divided by 14 and a remainder q [#permalink]

Show Tags

New post 22 Mar 2016, 16:54
I solved this question in the following way:

Q<7 so Q can be from 0 to 6 and P<14 so P can be from 0 to 13, BUT the constraint is P=Q +7 so this will mean that P can be in the range from 7 to 13.

m=14k + P or m= 14k + 7 to 13 and look at the answeras, place different values for k, B will give 53 which is 14*3 + 10, the other answers are out of the range
Expert Post
1 KUDOS received
EMPOWERgmat Instructor
User avatar
V
Status: GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Joined: 19 Dec 2014
Posts: 11979
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Re: The number m yields a remainder p when divided by 14 and a remainder q [#permalink]

Show Tags

New post 24 Mar 2016, 11:12
1
Hi All,

This question can be solved with some basic arithmetic, 'brute force' and TESTing THE ANSWERS.

We're told that the number M yields a remainder P when divided by 14 and a remainder Q when divided by 7. We're also told that P = Q + 7. We're asked which one of the following COULD be the value of M.

Since the question asks which answer COULD be the value of M, then that means that there's more than one possible answer. As such, we really just have to play around with the answers that are here and when we find a 'match', we can stop working.

Let's TEST Answer A: 45

IF....
M = 45
45/14 = 3r3 so P = 3
45/7 = 6r3 so Q = 3
3 does NOT = 3+7 though, so this is NOT the answer.

Let's TEST Answer B: 53

IF....
M = 53
53/14 = 3r11 so P = 11
53/7 = 7r4 so Q = 4
11 DOES = 4+7, so this MUST be the answer.

Final Answer:

GMAT assassins aren't born, they're made,
Rich
_________________

760+: Learn What GMAT Assassins Do to Score at the Highest Levels
Contact Rich at: Rich.C@empowergmat.com

Rich Cohen

Co-Founder & GMAT Assassin

Special Offer: Save $75 + GMAT Club Tests Free
  Official GMAT Exam Packs + 70 Pt. Improvement Guarantee
www.empowergmat.com/

***********************Select EMPOWERgmat Courses now include ALL 6 Official GMAC CATs!***********************

Expert Post
Target Test Prep Representative
User avatar
G
Status: Head GMAT Instructor
Affiliations: Target Test Prep
Joined: 04 Mar 2011
Posts: 2669
Re: The number m yields a remainder p when divided by 14 and a remainder q [#permalink]

Show Tags

New post 26 Feb 2018, 11:22
jhabib wrote:
The number m yields a remainder p when divided by 14 and a remainder q when divided by 7. If p = q + 7, then which one of the following could be the value of m ?

(A) 45
(B) 53
(C) 72
(D) 85
(E) 100


Let’s go through the answer choices because they are not difficult to work with.

(A) 45

45/14 = 3 r 3 and 45/7 = 6 r 3

We see that p = 3 and q = 3, but it’s given that p = q + 7, so A can’t be the answer.

(B) 53

53/14 = 3 r 11 and 53/7 = 7 r 4

We see that p = 11 and q = 4, and p = q + 7, so B is the answer.

(We will leave the readers to verify that C, D and E couldn’t be the answer either.)

Answer: B
_________________

Jeffery Miller
Head of GMAT Instruction

GMAT Quant Self-Study Course
500+ lessons 3000+ practice problems 800+ HD solutions

VP
VP
avatar
P
Joined: 07 Dec 2014
Posts: 1034
The number m yields a remainder p when divided by 14 and a remainder q [#permalink]

Show Tags

New post 02 Mar 2018, 16:25
jhabib wrote:
The number m yields a remainder p when divided by 14 and a remainder q when divided by 7. If p = q + 7, then which one of the following could be the value of m ?

(A) 45
(B) 53
(C) 72
(D) 85
(E) 100


m/7 gives these successive possible values of m: q, q+7, q+14, q+21, q+28, q+35, q+42, q+49
m/14 gives these successive possible values of m: q+7, q+21, q+35, q+49
q+7, q+21, and q+35 won't work, as q>divisor 7
testing q+49=53,
q=4; q+7=11 yes
m=53
B
VP
VP
User avatar
D
Status: It's near - I can see.
Joined: 13 Apr 2013
Posts: 1119
Location: India
Concentration: International Business, Operations
GMAT 1: 480 Q38 V22
GPA: 3.01
WE: Engineering (Consulting)
Premium Member Reviews Badge CAT Tests
Re: The number m yields a remainder p when divided by 14 and a remainder q [#permalink]

Show Tags

New post 29 Mar 2018, 22:43
jhabib wrote:
The number m yields a remainder p when divided by 14 and a remainder q when divided by 7. If p = q + 7, then which one of the following could be the value of m ?

(A) 45
(B) 53
(C) 72
(D) 85
(E) 100


TESTING VALUES IS BEST WAY HERE:

Start with (C)

72/14 = 5 rem 2 (p)

72/7 = 10 rem 2 (q)

p - q = 0, but we need p - q = 7

Go for (B)

53/14 = 3 rem 11

53/7 = 7 rem 4

p - q = 11 - 4 = 7

Hence (B)
_________________

"Do not watch clock; Do what it does. KEEP GOING."

1 KUDOS received
Intern
Intern
avatar
B
Joined: 02 Oct 2016
Posts: 25
Reviews Badge
Re: The number m yields a remainder p when divided by 14 and a remainder q [#permalink]

Show Tags

New post 08 Apr 2018, 07:04
1
I solved this question in the following way:

Q<7 so Q can be from 0 to 6 and P<14 so P can be from 0 to 13, BUT the constraint is P=Q +7 so this will mean that P can be in the range from 7 to 13.

m=14k + P or m= 14k + 7 to 13 and look at the answeras, place different values for k, B will give 53 which is 14*3 + 10, the other answers are out of the range
Re: The number m yields a remainder p when divided by 14 and a remainder q   [#permalink] 08 Apr 2018, 07:04
Display posts from previous: Sort by

The number m yields a remainder p when divided by 14 and a remainder q

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  

Events & Promotions

PREV
NEXT


cron

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.