Summer is Coming! Join the Game of Timers Competition to Win Epic Prizes. Registration is Open. Game starts Mon July 1st.

 It is currently 20 Jul 2019, 04:45 ### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

#### Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.  # The points A(0, 0), B(0, 4a - 5) and C(2a + 1, 2a + 6) form a triangle

Author Message
TAGS:

### Hide Tags

Math Expert V
Joined: 02 Sep 2009
Posts: 56303
The points A(0, 0), B(0, 4a - 5) and C(2a + 1, 2a + 6) form a triangle  [#permalink]

### Show Tags

6
20 00:00

Difficulty:   55% (hard)

Question Stats: 70% (02:50) correct 30% (02:53) wrong based on 159 sessions

### HideShow timer Statistics The points A(0, 0), B(0, 4a - 5) and C(2a + 1, 2a + 6) form a triangle. If angle ABC = 90, what is the area of triangle ABC?

A. 102
B. 120
C. 132
D. 144
E. 156

Kudos for a correct solution.

_________________
Math Expert V
Joined: 02 Sep 2009
Posts: 56303
Re: The points A(0, 0), B(0, 4a - 5) and C(2a + 1, 2a + 6) form a triangle  [#permalink]

### Show Tags

4
1
Bunuel wrote:
The points A(0, 0), B(0, 4a - 5) and C(2a + 1, 2a + 6) form a triangle. If angle ABC = 90, what is the area of triangle ABC?

A. 102
B. 120
C. 132
D. 144
E. 156

Kudos for a correct solution.

MAGOOSH OFFICIAL SOLUTION:
Attachment: righttrianglearea_text.PNG [ 17.63 KiB | Viewed 8484 times ]

_________________
Director  Joined: 07 Aug 2011
Posts: 518
GMAT 1: 630 Q49 V27 Re: The points A(0, 0), B(0, 4a - 5) and C(2a + 1, 2a + 6) form a triangle  [#permalink]

### Show Tags

4
1
Bunuel wrote:
The points A(0, 0), B(0, 4a - 5) and C(2a + 1, 2a + 6) form a triangle. If angle ABC = 90, what is the area of triangle ABC?

A. 102
B. 120
C. 132
D. 144
E. 156

Kudos for a correct solution.

B and C should have same Y co-ordinate --> $$4a-5 = 2a+6$$ --> a=$$\frac{11}{2}$$

area of triangle = $$\frac{1}{2} * (4a-5) * (2a+1)$$ . on substituting a=$$\frac{11}{2}$$
we get area = 102 .

##### General Discussion
Retired Moderator B
Status: On a mountain of skulls, in the castle of pain, I sit on a throne of blood.
Joined: 30 Jul 2013
Posts: 304
Re: The points A(0, 0), B(0, 4a - 5) and C(2a + 1, 2a + 6) form a triangle  [#permalink]

### Show Tags

2
1
Bunuel wrote:
The points A(0, 0), B(0, 4a - 5) and C(2a + 1, 2a + 6) form a triangle. If angle ABC = 90, what is the area of triangle ABC?

A. 102
B. 120
C. 132
D. 144
E. 156

Kudos for a correct solution.

1/2bh=1/2(2a+1)(2a+6)

Now 4a-5=2a+6
2a=11

Therefore,
A(0,0); B(0,17); C(12,17)

1/2*17*12=102

Intern  B
Joined: 05 Aug 2016
Posts: 1
Re: The points A(0, 0), B(0, 4a - 5) and C(2a + 1, 2a + 6) form a triangle  [#permalink]

### Show Tags

AmoyV wrote:
Bunuel wrote:
The points A(0, 0), B(0, 4a - 5) and C(2a + 1, 2a + 6) form a triangle. If angle ABC = 90, what is the area of triangle ABC?

Now 4a-5=2a+6

Sorry, but I did not get to your calculations - why it is so? What I missed?
Intern  B
Joined: 12 Dec 2017
Posts: 3
The points A(0, 0), B(0, 4a - 5) and C(2a + 1, 2a + 6) form a triangle  [#permalink]

### Show Tags

1
Aksena wrote:
AmoyV wrote:
Bunuel wrote:
The points A(0, 0), B(0, 4a - 5) and C(2a + 1, 2a + 6) form a triangle. If angle ABC = 90, what is the area of triangle ABC?

Now 4a-5=2a+6

Sorry, but I did not get to your calculations - why it is so? What I missed?

Im guessing you have problems understanding why 4a-5 = 2a+6

Now, the reason they got to that equation was due to the given information that angle ABC = 90
--> This implies that triangle ABC was a right angle
--> Now A was given at the origin (0,0), while B was given to be somewhere along the Y-axis as its X-coordinates = 0
--> Hence, as ABC was a right triangle, the point C will have the same Y-coordinates as B in order to form the right triangle (i.e. to fulfill angle ABC = 90)
--> B(0,4a-5) and C(2a+1, 2a+6)
--> Therefore 4a-5 = 2a+6, solve for a and you can find the area of the triangle with the basic area formula for right triangles: base x height / 2
Target Test Prep Representative D
Status: Founder & CEO
Affiliations: Target Test Prep
Joined: 14 Oct 2015
Posts: 6968
Location: United States (CA)
Re: The points A(0, 0), B(0, 4a - 5) and C(2a + 1, 2a + 6) form a triangle  [#permalink]

### Show Tags

Bunuel wrote:
The points A(0, 0), B(0, 4a - 5) and C(2a + 1, 2a + 6) form a triangle. If angle ABC = 90, what is the area of triangle ABC?

A. 102
B. 120
C. 132
D. 144
E. 156

Since we have a right triangle with angle ABC = 90, we see that vertices A and B share the same x-coordinate, and vertices B and C share the same y-coordinate.

Equating the y-coordinates of vertices B and C, we have:

4a - 5 = 2a + 6

2a = 11

a = 5.5

Substituting 5.5 for a, we see that the ordered pair for vertex B is (0, 4(5.5) - 5), or (0, 17). Thus, leg AB is the vertical distance from (0,0) to (0,17), or 17.
Similarly, we see that the ordered pair for vertex C is (12, 17) and leg BC is is the horizontal distance from (0,17) to (12, 17) = 12.

Thus, the area of the triangle is:

area = base x height x 1/2

area = 17 x 12 x 1/2 = 17 x 6 = 102

_________________

# Scott Woodbury-Stewart

Founder and CEO

Scott@TargetTestPrep.com

See why Target Test Prep is the top rated GMAT quant course on GMAT Club. Read Our Reviews

If you find one of my posts helpful, please take a moment to click on the "Kudos" button.

Non-Human User Joined: 09 Sep 2013
Posts: 11717
Re: The points A(0, 0), B(0, 4a - 5) and C(2a + 1, 2a + 6) form a triangle  [#permalink]

### Show Tags

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________ Re: The points A(0, 0), B(0, 4a - 5) and C(2a + 1, 2a + 6) form a triangle   [#permalink] 09 Mar 2019, 01:14
Display posts from previous: Sort by

# The points A(0, 0), B(0, 4a - 5) and C(2a + 1, 2a + 6) form a triangle  