Last visit was: 28 Mar 2025, 07:34 It is currently 28 Mar 2025, 07:34
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
testprep2010
Joined: 10 Feb 2010
Last visit: 27 Feb 2013
Posts: 92
Own Kudos:
711
 [68]
Given Kudos: 6
Posts: 92
Kudos: 711
 [68]
5
Kudos
Add Kudos
63
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 28 March 2025
Posts: 100,127
Own Kudos:
Given Kudos: 92,748
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 100,127
Kudos: 711,514
 [54]
23
Kudos
Add Kudos
31
Bookmarks
Bookmark this Post
General Discussion
User avatar
fatihaysu
Joined: 23 Apr 2010
Last visit: 19 Aug 2011
Posts: 91
Own Kudos:
1,163
 [1]
Given Kudos: 36
Location: Tx
Concentration: Marketing
 Q44  V19 GMAT 2: 0  Q0  V0 GMAT 3: 0  Q0  V0
GPA: 2.88
Posts: 91
Kudos: 1,163
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
zisis
Joined: 16 Feb 2010
Last visit: 01 Jul 2012
Posts: 122
Own Kudos:
1,635
 [1]
Given Kudos: 16
Posts: 122
Kudos: 1,635
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel

BUT: in DS statements never contradict, so this cannot be real GMAT question. I guess one of the statements should be "x is NOT factor of k". In this case answer still would be D, but the question will be of GMAT type.

Hope it's clear.

Good guess.....took me 10 minutes staring at the question trying to figure out wtf i was missing :shock: :roll: :idea:
User avatar
YourDreamTheater
Joined: 22 Oct 2009
Last visit: 08 Sep 2012
Posts: 223
Own Kudos:
214
 [1]
Given Kudos: 1
GMAT 1: 760 Q49 V44
GPA: 3.88
GMAT 1: 760 Q49 V44
Posts: 223
Kudos: 214
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Phew! Glad to see I wasn't missing something ridiculous.

Could one of the mods modify the original question to make the two statements agree with each other a-la Bunuel's correction?
User avatar
mainhoon
Joined: 18 Jul 2010
Last visit: 10 Oct 2013
Posts: 535
Own Kudos:
Given Kudos: 15
Status:Apply - Last Chance
Affiliations: IIT, Purdue, PhD, TauBetaPi
Concentration: $ Finance $
Schools:Wharton, Sloan, Chicago, Haas
 Q50  V37
GPA: 4.0
WE 1: 8 years in Oil&Gas
Posts: 535
Kudos: 376
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
testprep2010
The positive integer k has exactly two positive prime factors 3 and 7. If k has a total of 6 positive factors including 1 and k, what is the value of k?

(1) 9 is a factor of k.
(2) 49 is a factor of k.
Finding the Number of Factors of an Integer:

First make prime factorization of an integer \(n=a^p*b^q*c^r\), where \(a\), \(b\), and \(c\) are prime factors of \(n\) and \(p\), \(q\), and \(r\) are their powers.

The number of factors of \(n\) will be expressed by the formula \((p+1)(q+1)(r+1)\). NOTE: this will include 1 and n itself.

Example: Finding the number of all factors of 450: \(450=2^1*3^2*5^2\)

Total number of factors of 450 including 1 and 450 itself is \((1+1)*(2+1)*(2+1)=2*3*3=18\) factors.


Back to the original question:
"k has exactly two positive prime factors 3 and 7" --> \(k=3^m*7^n\), where \(m=integer\geq{1}\) and \(n=integer\geq{1}\);
"k has a total of 6 positive factors including 1 and k" --> \((m+1)(n+1)=6\). Note here that neither \(m\) nor \(n\) can be more than 2 as in this case \((m+1)(n+1)\) will be more than 6.

So, there are only two values of \(k\) possible:
1. if \(m=1\) and \(n=2\) --> \(k=3^1*7^2=3*49\);
2. if \(m=2\) and \(n=1\) --> \(k=3^2*7^1=9*7\).


(1) 9 is a factor of k --> we have the second case, hence \(k=3^2*7^1=9*7\). Sufficient.

(2) 49 is a factor of k --> we have the first case, hence \(k=3^1*7^2=3*49\). Sufficient.

Answer: D.

BUT: in DS statements never contradict, so this cannot be real GMAT question. I guess one of the statements should be "x is NOT factor of k". In this case answer still would be D, but the question will be of GMAT type.

Hope it's clear.

Bunuel
Back to the contradiction part, so in this case because we are getting 2 different values for k from 1 and 2 - that is why this is not a good gmat question? If (2) said 49 is NOT a factor of k, then looking at (2) alone we could reach the conclusion that k = 63 and 1 already gave us 63, hence D? Is the reasoning correct?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 28 March 2025
Posts: 100,127
Own Kudos:
711,514
 [3]
Given Kudos: 92,748
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 100,127
Kudos: 711,514
 [3]
2
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
mainhoon
Bunuel
testprep2010
The positive integer k has exactly two positive prime factors 3 and 7. If k has a total of 6 positive factors including 1 and k, what is the value of k?

(1) 9 is a factor of k.
(2) 49 is a factor of k.
Finding the Number of Factors of an Integer:

First make prime factorization of an integer \(n=a^p*b^q*c^r\), where \(a\), \(b\), and \(c\) are prime factors of \(n\) and \(p\), \(q\), and \(r\) are their powers.

The number of factors of \(n\) will be expressed by the formula \((p+1)(q+1)(r+1)\). NOTE: this will include 1 and n itself.

Example: Finding the number of all factors of 450: \(450=2^1*3^2*5^2\)

Total number of factors of 450 including 1 and 450 itself is \((1+1)*(2+1)*(2+1)=2*3*3=18\) factors.


Back to the original question:
"k has exactly two positive prime factors 3 and 7" --> \(k=3^m*7^n\), where \(m=integer\geq{1}\) and \(n=integer\geq{1}\);
"k has a total of 6 positive factors including 1 and k" --> \((m+1)(n+1)=6\). Note here that neither \(m\) nor \(n\) can be more than 2 as in this case \((m+1)(n+1)\) will be more than 6.

So, there are only two values of \(k\) possible:
1. if \(m=1\) and \(n=2\) --> \(k=3^1*7^2=3*49\);
2. if \(m=2\) and \(n=1\) --> \(k=3^2*7^1=9*7\).


(1) 9 is a factor of k --> we have the second case, hence \(k=3^2*7^1=9*7\). Sufficient.

(2) 49 is a factor of k --> we have the first case, hence \(k=3^1*7^2=3*49\). Sufficient.

Answer: D.

BUT: in DS statements never contradict, so this cannot be real GMAT question. I guess one of the statements should be "x is NOT factor of k". In this case answer still would be D, but the question will be of GMAT type.

Hope it's clear.

Bunuel
Back to the contradiction part, so in this case because we are getting 2 different values for k from 1 and 2 - that is why this is not a good gmat question? If (2) said 49 is NOT a factor of k, then looking at (2) alone we could reach the conclusion that k = 63 and 1 already gave us 63, hence D? Is the reasoning correct?

Yes, it's not a good GMAT question as the single numerical value of k from (1) differs from the single numerical value of k from (2) - statements contradict each other.

It seems that statement (2) should be: 49 is NOT a factor of k --> we have the second case, hence \(k=3^2*7^1=9*7\). Sufficient.

So as statement (1) is sufficient and statement (2) is also sufficient, answers is D. In this case each statement gives the same value of k, thus the problem of contradiction is resolved.
avatar
mbhussain
Joined: 06 Apr 2011
Last visit: 09 Mar 2014
Posts: 10
Own Kudos:
Given Kudos: 292
Posts: 10
Kudos: 9
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Thanks Bunuel for clarifying
both statements contradict. kept me going in circle for 4 minutes and then i referred to your explanation.
+1 Kudos.....
avatar
fozzzy
Joined: 29 Nov 2012
Last visit: 17 May 2015
Posts: 575
Own Kudos:
Given Kudos: 543
Posts: 575
Kudos: 6,466
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Statement B is (2) 7^2 is not a factor of k.

In that case the example in statement 1 will be the only example that satisfies the condition plus we have to satisfy 6 factors

3^2 * 7^1

(2+1) (1+1) = 6 factors
User avatar
TooLong150
Joined: 10 Mar 2013
Last visit: 07 Feb 2022
Posts: 135
Own Kudos:
Given Kudos: 2,412
GMAT 1: 620 Q44 V31
GMAT 2: 610 Q47 V28
GMAT 3: 700 Q49 V36
GMAT 4: 690 Q48 V35
GMAT 5: 750 Q49 V42
GMAT 6: 730 Q50 V39
GPA: 3
Products:
GMAT 6: 730 Q50 V39
Posts: 135
Kudos: 513
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
testprep2010
The positive integer k has exactly two positive prime factors 3 and 7. If k has a total of 6 positive factors including 1 and k, what is the value of k?

(1) 9 is a factor of k.
(2) 49 is a factor of k.
Finding the Number of Factors of an Integer:

First make prime factorization of an integer \(n=a^p*b^q*c^r\), where \(a\), \(b\), and \(c\) are prime factors of \(n\) and \(p\), \(q\), and \(r\) are their powers.

The number of factors of \(n\) will be expressed by the formula \((p+1)(q+1)(r+1)\). NOTE: this will include 1 and n itself.

Example: Finding the number of all factors of 450: \(450=2^1*3^2*5^2\)

Total number of factors of 450 including 1 and 450 itself is \((1+1)*(2+1)*(2+1)=2*3*3=18\) factors.


Back to the original question:
"k has exactly two positive prime factors 3 and 7" --> \(k=3^m*7^n\), where \(m=integer\geq{1}\) and \(n=integer\geq{1}\);
"k has a total of 6 positive factors including 1 and k" --> \((m+1)(n+1)=6\). Note here that neither \(m\) nor \(n\) can be more than 2 as in this case \((m+1)(n+1)\) will be more than 6.

So, there are only two values of \(k\) possible:
1. if \(m=1\) and \(n=2\) --> \(k=3^1*7^2=3*49\);
2. if \(m=2\) and \(n=1\) --> \(k=3^2*7^1=9*7\).


(1) 9 is a factor of k --> we have the second case, hence \(k=3^2*7^1=9*7\). Sufficient.

(2) 49 is a factor of k --> we have the first case, hence \(k=3^1*7^2=3*49\). Sufficient.

Answer: D.

BUT: in DS statements never contradict, so this cannot be real GMAT question. I guess one of the statements should be "x is NOT factor of k". In this case answer still would be D, but the question will be of GMAT type.

Hope it's clear.

Bunuel, why can't either \(m\) or \(n\) be \(0\)?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 28 March 2025
Posts: 100,127
Own Kudos:
Given Kudos: 92,748
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 100,127
Kudos: 711,514
Kudos
Add Kudos
Bookmarks
Bookmark this Post
TooLong150
Bunuel
testprep2010
The positive integer k has exactly two positive prime factors 3 and 7. If k has a total of 6 positive factors including 1 and k, what is the value of k?

(1) 9 is a factor of k.
(2) 49 is a factor of k.
Finding the Number of Factors of an Integer:

First make prime factorization of an integer \(n=a^p*b^q*c^r\), where \(a\), \(b\), and \(c\) are prime factors of \(n\) and \(p\), \(q\), and \(r\) are their powers.

The number of factors of \(n\) will be expressed by the formula \((p+1)(q+1)(r+1)\). NOTE: this will include 1 and n itself.

Example: Finding the number of all factors of 450: \(450=2^1*3^2*5^2\)

Total number of factors of 450 including 1 and 450 itself is \((1+1)*(2+1)*(2+1)=2*3*3=18\) factors.


Back to the original question:
"k has exactly two positive prime factors 3 and 7" --> \(k=3^m*7^n\), where \(m=integer\geq{1}\) and \(n=integer\geq{1}\);
"k has a total of 6 positive factors including 1 and k" --> \((m+1)(n+1)=6\). Note here that neither \(m\) nor \(n\) can be more than 2 as in this case \((m+1)(n+1)\) will be more than 6.

So, there are only two values of \(k\) possible:
1. if \(m=1\) and \(n=2\) --> \(k=3^1*7^2=3*49\);
2. if \(m=2\) and \(n=1\) --> \(k=3^2*7^1=9*7\).


(1) 9 is a factor of k --> we have the second case, hence \(k=3^2*7^1=9*7\). Sufficient.

(2) 49 is a factor of k --> we have the first case, hence \(k=3^1*7^2=3*49\). Sufficient.

Answer: D.

BUT: in DS statements never contradict, so this cannot be real GMAT question. I guess one of the statements should be "x is NOT factor of k". In this case answer still would be D, but the question will be of GMAT type.

Hope it's clear.

Bunuel, why can't either \(m\) or \(n\) be \(0\)?

We are told that k has exactly two positive prime factors 3 and 7. Now, if say n is 0, then \(k=3^m*7^0=3^m*1\) and in this case k would have only one prime 3.

Hope it's clear.
User avatar
kakal0t29
Joined: 09 Aug 2014
Last visit: 11 Oct 2021
Posts: 15
Own Kudos:
Given Kudos: 59
Posts: 15
Kudos: 11
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
testprep2010
The positive integer k has exactly two positive prime factors 3 and 7. If k has a total of 6 positive factors including 1 and k, what is the value of k?

(1) 9 is a factor of k.
(2) 49 is a factor of k.
Finding the Number of Factors of an Integer:

First make prime factorization of an integer \(n=a^p*b^q*c^r\), where \(a\), \(b\), and \(c\) are prime factors of \(n\) and \(p\), \(q\), and \(r\) are their powers.

The number of factors of \(n\) will be expressed by the formula \((p+1)(q+1)(r+1)\). NOTE: this will include 1 and n itself.

Example: Finding the number of all factors of 450: \(450=2^1*3^2*5^2\)

Total number of factors of 450 including 1 and 450 itself is \((1+1)*(2+1)*(2+1)=2*3*3=18\) factors.


Back to the original question:
"k has exactly two positive prime factors 3 and 7" --> \(k=3^m*7^n\), where \(m=integer\geq{1}\) and \(n=integer\geq{1}\);
"k has a total of 6 positive factors including 1 and k" --> \((m+1)(n+1)=6\). Note here that neither \(m\) nor \(n\) can be more than 2 as in this case \((m+1)(n+1)\) will be more than 6.

So, there are only two values of \(k\) possible:
1. if \(m=1\) and \(n=2\) --> \(k=3^1*7^2=3*49\);
2. if \(m=2\) and \(n=1\) --> \(k=3^2*7^1=9*7\).


(1) 9 is a factor of k --> we have the second case, hence \(k=3^2*7^1=9*7\). Sufficient.

(2) 49 is a factor of k --> we have the first case, hence \(k=3^1*7^2=3*49\). Sufficient.

Answer: D.

BUT: in DS statements never contradict, so this cannot be real GMAT question. I guess one of the statements should be "x is NOT factor of k". In this case answer still would be D, but the question will be of GMAT type.

Hope it's clear.
May i ask you one question?
As i understand that " k has a total of 6 positive factors which includes 1 and k, + exactly two positive prime factors, 3 and 7 " which mean factors k can be (1,3,3,3,7,k) or (1,3,3,7,7,k) or (1,3,7,7,7,k)
So, (1): 9 is a factor of k --> we can have two cases: (1,3,3,3,7,63) or (1,3,3,7,7,441) -> insufficient
same for (2): -> insufficient
Combine: Sufficient:
Please correct me if i misunderstand the point here
Thank alot
P/s: Oh :shock: i just realized that there is another factor here is 21 (3*7), I'm sorry, you are correct :thumbup: !
Thanks
User avatar
Evo23
Joined: 18 Jan 2020
Last visit: 26 Aug 2021
Posts: 74
Own Kudos:
Given Kudos: 269
Posts: 74
Kudos: 160
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Option B is Incorrect. It should be

(B) 49 is NOT a factor of k.

Same question is available mentioning NOT in B
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 36,714
Own Kudos:
Posts: 36,714
Kudos: 963
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Moderator:
Math Expert
100124 posts