Mar 20 07:00 AM PDT  09:00 AM PDT Join a FREE 1day workshop and learn how to ace the GMAT while keeping your fulltime job. Limited for the first 99 registrants. Mar 19 08:00 AM PDT  09:00 AM PDT Beat the GMAT with a customized study plan based on your needs! Learn how to create your preparation timeline, what makes a good study plan and which tools you need to use to build the perfect plan. Register today! Mar 20 09:00 PM EDT  10:00 PM EDT Strategies and techniques for approaching featured GMAT topics. Wednesday, March 20th at 9 PM EDT Mar 23 07:00 AM PDT  09:00 AM PDT Christina scored 760 by having clear (ability) milestones and a trackable plan to achieve the same. Attend this webinar to learn how to build trackable milestones that leverage your strengths to help you get to your target GMAT score.
Author 
Message 
TAGS:

Hide Tags

Math Expert
Joined: 02 Sep 2009
Posts: 53706

The price of a phone call consists of a standard connection fee, which
[#permalink]
Show Tags
27 Jul 2018, 01:32
Question Stats:
85% (02:12) correct 15% (02:20) wrong based on 105 sessions
HideShow timer Statistics



MBA Section Director
Affiliations: GMATClub
Joined: 22 May 2017
Posts: 2330
GPA: 4
WE: Engineering (Computer Software)

Re: The price of a phone call consists of a standard connection fee, which
[#permalink]
Show Tags
27 Jul 2018, 02:50
Let s be the standard connection fee and c be the minute charge A 10minute call costs $2.90 = 290 cents => s + 10c = 290  (1) 16minute call costs $4.40 = 440 cents => s + 16c = 440  (2) Subtracting 1 from 2 6c = 150 => c = 25 Substituting the value of c in 1 => s + 250 = 290 => s = 40 13minute call would cost => 40 + 13(25) = 365 cents = $3.65 Hence option D
_________________
MBA Chronicles  Interview Debriefs  Follow gmat_club on Instagram



Senior Manager
Joined: 21 Jan 2015
Posts: 460
Location: India
Concentration: Strategy, Marketing
GMAT 1: 620 Q48 V28 GMAT 2: 690 Q49 V35
WE: Sales (Consumer Products)

Re: The price of a phone call consists of a standard connection fee, which
[#permalink]
Show Tags
27 Jul 2018, 02:58
Ans: D As one method is already mentioned above.. Idea is same here but might be a bit short. Given : Call cost(C ) = fixed Charge (F)+ Minutes(minutes charge) (nM) : where n is number of minutes. so from stem: 2.90 = F+9M (Eq.1) 4.40 = F+15M (Eq.2): and we need to find F+12M = ?? (Eq.3) now we can start solving and do the calculations by finding one value and then getting second or just look at the equations. if we add Eq.1 & Eq.2 2.90 = F+9M 4.40 = F+15M  7.30 = 2F + 24M : gives is 3.65 =F+12M ans.. Bunuel wrote: The price of a phone call consists of a standard connection fee, which is constant, plus a per minute charge. A 10minute call costs $2.90 and a 16minute call costs $4.40. How much does a 13minute call cost?
(A) $3.55 (B) $3.57 (C) $3.58 (D) $3.65 (E) $3.77
_________________
 The Mind is Everything, What we Think we Become.



Manager
Joined: 13 Feb 2018
Posts: 159

Re: The price of a phone call consists of a standard connection fee, which
[#permalink]
Show Tags
27 Jul 2018, 03:29
Let: F be be the fixed connection cost V be variable cost per minute
We get two equations: F+10V=2.9 F+16v=4.4
Solve it and F=0.4 V=0.25
0.4+13*0.25=3.65
IMO Ans: D



EMPOWERgmat Instructor
Status: GMAT Assassin/CoFounder
Affiliations: EMPOWERgmat
Joined: 19 Dec 2014
Posts: 13755
Location: United States (CA)

Re: The price of a phone call consists of a standard connection fee, which
[#permalink]
Show Tags
02 Oct 2018, 21:40
Hi All, We're told that the price of a phone call consists of a standard connection fee, which is constant, plus a per minute charge, a 10minute call costs $2.90 and a 16minute call costs $4.40. We're asked for the cost of a 13minute call. This question can be solved in a couple of different ways  and there's a great 'rate shortcut' that you can use to avoid some of the extra math that comes with certain approaches. Since there's a standard connection fee, we know that the difference between the costs of two calls is solely due to the number of minutes in the call. With the given information (about a 10minute call and a 16minute call), the difference in price comes down to the 6 minute difference in the length of the calls. Thus, the extra 6 minutes cost an extra $4.40  $2.90 = $1.50. We're asked for the cost of a 13minute call  which is exactly 'halfway' between those two prices. Half of $1.50 is $0.75, so we can add that to the cost of a 10minute call to find the cost of the 13minute call. $2.90 + $0.75 = $3.65 Final Answer: GMAT assassins aren't born, they're made, Rich
_________________
760+: Learn What GMAT Assassins Do to Score at the Highest Levels Contact Rich at: Rich.C@empowergmat.com
Rich Cohen
CoFounder & GMAT Assassin
Special Offer: Save $75 + GMAT Club Tests Free
Official GMAT Exam Packs + 70 Pt. Improvement Guarantee www.empowergmat.com/
*****Select EMPOWERgmat Courses now include ALL 6 Official GMAC CATs!*****



Target Test Prep Representative
Status: Founder & CEO
Affiliations: Target Test Prep
Joined: 14 Oct 2015
Posts: 5356
Location: United States (CA)

Re: The price of a phone call consists of a standard connection fee, which
[#permalink]
Show Tags
03 Oct 2018, 17:59
Bunuel wrote: The price of a phone call consists of a standard connection fee, which is constant, plus a per minute charge. A 10minute call costs $2.90 and a 16minute call costs $4.40. How much does a 13minute call cost?
(A) $3.55 (B) $3.57 (C) $3.58 (D) $3.65 (E) $3.77 Letting f = the standard connection fee and n = the perminute charge, we can create two equations, one for the 10minute call and one for the 16minute call:: f + 10n = 2.90 and f + 16n = 4.40 Subtracting the first equation from the second, we have: 6n = 1.50 n = 0.25 Substituting 0.25 for n into the first equation, we see that f is: f + 2.5 = 2.90 f = 0.4 So a 13minute call costs 0.4 + 13 x 0.25 = $3.65. Alternate solution: If we let m = the perminute charge, x = the number of minutes, b = the standard connection fee, and y = the total cost of an xminute call, we will have y = mx + b. As we can see, this is a line, and the ordered pairs (10, 2.90) and (16, 4.40) are on this line. We are looking for the yvalue when x = 13. We can observe that 13 is exactly halfway between 10 and 16; therefore, the yvalue should be exactly halfway between 2.90 and 4.40 also. Thus y = (2.90 + 4.40)/2 = 7.30/2 = 3.65. Answer: D
_________________
5star rated online GMAT quant self study course
See why Target Test Prep is the top rated GMAT quant course on GMAT Club. Read Our Reviews



GMATH Teacher
Status: GMATH founder
Joined: 12 Oct 2010
Posts: 902

The price of a phone call consists of a standard connection fee, which
[#permalink]
Show Tags
04 Oct 2018, 06:52
Bunuel wrote: The price of a phone call consists of a standard connection fee, which is constant, plus a per minute charge. A 10minute call costs $2.90 and a 16minute call costs $4.40. How much does a 13minute call cost?
(A) $3.55 (B) $3.57 (C) $3.58 (D) $3.65 (E) $3.77
\(? = f + 13c\,\,\,\,\left[ \$ \right]\) The constant fee (f) and the minutecharge (c) will be considered in CENTS. (Amounts in cents are always integers!) \(\left\{ \matrix{ \,f + 10c = 290 \hfill \cr \,f + 16c = 440 \hfill \cr} \right.\,\,\,\,\,\,\,\,\mathop \Rightarrow \limits^{\left( + \right)} \,\,\,\,\,\,2f + 26c = 290 + 440\,\,\,\,\,\,\mathop \Rightarrow \limits^{{\rm{focus}}\,!} \,\,\,\,\,\,? = {{2f + 26c} \over 2} = 145 + 220 = 365\,\,\,\,\,\,\left[ {\,{\rm{cents}}\,} \right]\) This solution follows the notations and rationale taught in the GMATH method. Regards, Fabio.
_________________
Fabio Skilnik :: GMATH method creator (Math for the GMAT) Our highlevel "quant" preparation starts here: https://gmath.net



CEO
Joined: 12 Sep 2015
Posts: 3511
Location: Canada

Re: The price of a phone call consists of a standard connection fee, which
[#permalink]
Show Tags
10 Jan 2019, 10:40
Bunuel wrote: The price of a phone call consists of a standard connection fee, which is constant, plus a per minute charge. A 10minute call costs $2.90 and a 16minute call costs $4.40. How much does a 13minute call cost?
(A) $3.55 (B) $3.57 (C) $3.58 (D) $3.65 (E) $3.77 Let C = price of connection fee Let M = the price PER MINUTE A 10minute call costs $2.90 We can write: C + 10M = 2.90A 16minute call costs $4.40.We can write: C + 16M = 4.40How much does a 13minute call cost?So far, we have: C + 10M = 2.90C + 16M = 4.40ONE ( slower) approach would be to solve the system for C and M, and then calculate the cost of a 13minute call. The FASTER approach is to recognize that something great happens when we ADD the two equationsWe get: 2C + 26M = 7.30 Now divide both sides by 2 to get: C + 13M = 3.65 Since C + 13M represents the TOTAL cost of a 13minute call, we can conclude that a 13minute call costs $3.65 Answer: D Cheers, Brent
_________________
Test confidently with gmatprepnow.com




Re: The price of a phone call consists of a standard connection fee, which
[#permalink]
10 Jan 2019, 10:40






