vanidhar wrote:

The size of a television screen is given as the length of the screen’s diagonal. If the screens were flat, then the area of a square 21-inch screen would be how many square inches greater than the area of a square 19-inch screen?

A. 2

B. 4

C. 16

D. 38

E. 40

Let’s determine the side of the square 21-inch screen (i.e., the diagonal of the screen is 21 inches). Recall that the diagonal of a square is equal to side√2.

21 = side√2

21/√2 = side

Since area is side^2, the area of the 21-inch screen is (21/√2)^2 = 441/2.

Let’s determine the side of the square 19-inch screen:

19 = side√2

19/√2 = side

The area of the 19-inch screen is (19/√2)^2 = 361/2.

Thus, the difference is 441/2 - 361/2 = 80/2 = 40.

Alternate solution:

We are given two square TV screens with diagonals 21 and 19, respectively. We have to determine the difference between the areas of the screens. Recall that the area of a square, given its diagonal d, is A = d^2/2. Thus, the area of the 21-inch screen is 21^2/2 = 441/2 and the area of the 19-inch screen is 19^2/2 = 361/2. Therefore, the difference in areas is 441/2 - 361/2 = 80/2 = 40.

Answer: E

_________________

Scott Woodbury-Stewart

Founder and CEO

GMAT Quant Self-Study Course

500+ lessons 3000+ practice problems 800+ HD solutions