gvishesh21
This month, a factory will produce a certain number of articles, a part of which will be sold. Next month the factory will produce only half the number of articles produced this month, but for each article that is unsold this month, k articles will be sold next month. Ignoring the production and sales of articles in all months prior to this month, in terms of k, what fraction of the number of articles produced this month should be sold this month so that the cumulative number of articles remaining unsold next month would be equal to 1/3 the number of articles sold this month?
(A) \(\frac{4 (2 − k)}{3 (1 − k)}\)
(B) \(\frac{2 (4 − 2k)}{3 (2 − 3k)}\)
(C) \(\frac{3 (4 − 3k)}{2 (3 − 2k)}\)
(D) \(\frac{(3 − 2k)}{(4 − 3k)}\)
(E) \(\frac{3 (3 − 2k)}{2 (4 − 3k)}\)
Two ways
(1)
ALGEBRAIC Month……Produced…….Total………Sold……..Unsold
Present………..x………..……x…………..a…………..x-a
Next……………x/2………\((x-a)+\frac{x}{2}\)….k(x-a)…… \((x-a)+\frac{x}{2}\)-\(k(x-a)\)
Given: \((x-a)+\frac{x}{2}\)-\(k(x-a)=\frac{a}{3}\)
We are looking for the value of \(\frac{a}{x}\) \((x-a)+\frac{x}{2}\)-\(k(x-a)=\frac{a}{3}\)
\(\frac{3x}{2}-a\)-\(kx+ak=\frac{a}{3}\)
\(\frac{(3-2k)x}{2}=\frac{3a(1-k)+a}{3}=\frac{a(4-3k)}{3}\)
Divide the entire expression by x
\(\frac{(3-2k)x}{x*2}=\frac{a(4-3k)}{3*x}\)
\(\frac{(3-2k)}{2}=\frac{a}{x}*\frac{(4-3k)}{3}\)
\(\frac{a}{x}=\frac{3(3-2k)}{2(4-3k)}\)
(2)
Substitution as also shown by
KushchokhaniMonth……Produced…….Total………Sold……..Unsold
Present……100………..…100…………..60…………..40
Next…………50…………….90………….40k…………..20
So, 90-40k=20 or k=7/4
K as 7/4 should give the answer as 60/100 or 3/5.
E gives the answer.
E