Let's begin by simply finding at least one pair of values \(x\) and \(y\) that works in the given equation.
Since \(2x\) is always even, but \(57\) is odd, we must have \(9y =\) odd, so \(y\) is odd. The first odd multiple of \(9\) below \(57\) is \(9 * 5 = 45\), which would leave \(2x = 57 - 45 = 12\) and \(x = 6\). Thus \((6, 5)\) is one pair of values \((x, y)\) that solves the given equation, and \(x^2 + 2xy + y^2 = (x+y)^2\) could be \(121\).
However, now note that the least common multiple of \(2\) and \(9\) is \(2 * 9 = 18\), and we can reduce \(x\) and increase \(y\) (or vice versa) in a \(9:2\) ratio. That is, increasing \(x\) by \(9\) and decreasing \(y\) by \(2\), or vice versa, would not change the total value of \(2x + 9y\).
In turn, such a swap would increase or decrease the total of \(x + y\) by \(7\) each time. So it would also be possible, for instance, to obtain \(x+y = 4\) by switching \((x, y)\) from \((6, 5)\) to \((6 - 9, 5 + 2) = (-3, 7)\), which gives \(x^2 + 2xy + y^2 = 16\).
However, this is still not the minimum for \(|x + y|\), since one more swap gives \((x, y) = (-3-9, 7+2) = (-12, 9)\). Then \(x + y = -3\), and \(x^2 + 2xy + y^2 = 9\). This value actually is the minimum, since continued swaps will only ever increase or decrease the value of \(x + y\) by \(7\) each time and thus cannot move \((x+y)^2\) closer to zero. B is correct.
Here's another, slightly more algebraic approach:
Let's have the unknown sum of \(x + y\) be \(C\). We can write the system
\(2x + 9y = 57\)
\(x + y = C\)
Now, multiplying the second equation by \(2\) and subtracting will eliminate \(x\):
\(2x + 9y = 57\)
\(2x + 2y = 2C\)
\(7y = 57 - 2C\)
Since the left side is a multiple of \(7\), the right side must also be a multiple of \(7\). The closest multiple of \(7\) to \(57\) is \(56\), but this would require \(C = 1/2\), which is impossible since \(x\) and \(y\) are both integers. The next closest multiple of \(7\) to \(57\) is \(63\), which occurs when \(C = -3\). This, in turn, gives \(9\) as the least possible value of \(x^2 + 2xy + y^2\). Once again, B is correct.