Last visit was: 20 Nov 2025, 01:21 It is currently 20 Nov 2025, 01:21
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
avatar
Richard0715
Joined: 08 Nov 2012
Last visit: 01 Jul 2014
Posts: 18
Own Kudos:
Given Kudos: 6
Posts: 18
Kudos: 10
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
Zarrolou
Joined: 02 Sep 2012
Last visit: 11 Dec 2013
Posts: 846
Own Kudos:
5,145
 [1]
Given Kudos: 219
Status:Far, far away!
Location: Italy
Concentration: Finance, Entrepreneurship
GPA: 3.8
Posts: 846
Kudos: 5,145
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
mikemcgarry
User avatar
Magoosh GMAT Instructor
Joined: 28 Dec 2011
Last visit: 06 Aug 2018
Posts: 4,479
Own Kudos:
Given Kudos: 130
Expert
Expert reply
Posts: 4,479
Kudos: 30,537
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
KarishmaParmar
Joined: 15 Feb 2016
Last visit: 21 Jan 2017
Posts: 51
Own Kudos:
Given Kudos: 28
GMAT 1: 710 Q48 V40
Products:
GMAT 1: 710 Q48 V40
Posts: 51
Kudos: 37
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Richard0715
The height of an equilateral triangle splits the triangle into two 30-60-90 triangles (Each 30-60-90 triangle has sides in the ratio of 1: square root of 3: 2). Because of this, the area for an equilateral triangle can be expressed in terms of one side. If we call the side of the equilateral triangle, s, the height must be (s multiplied by square root of 3) / 2 (using the 30-60-90 relationships).


Can someone explain why the height which is the square root of 3 is being divided by 2? The explanation then states... "The area of a triangle = 1/2 × base × height, so the area of an equilateral triangle can be expressed as: 1/2 × s × (s multiplied by square root of 3) / 2 .

The question i pulled this from is asking about the area of the triangle. MGMAT's explanation does not make sense to me of why the height is being divided by 2 initially.

Thanks!!!!!!


This derivation helped me with the question. When we draw a perpendicular from C to AB , the two triangles ( X and Y) automatically become congruent.
Attachments

Equilateral Triangle.PNG
Equilateral Triangle.PNG [ 622.05 KiB | Viewed 6091 times ]

User avatar
chaitanya87
Joined: 01 Jul 2013
Last visit: 22 Sep 2020
Posts: 64
Own Kudos:
Given Kudos: 5
GMAT 1: 620 Q49 V26
GMAT 2: 590 Q49 V21
GPA: 2.8
WE:Other (Consulting)
Products:
GMAT 2: 590 Q49 V21
Posts: 64
Kudos: 53
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Richard0715
The height of an equilateral triangle splits the triangle into two 30-60-90 triangles (Each 30-60-90 triangle has sides in the ratio of 1: square root of 3: 2). Because of this, the area for an equilateral triangle can be expressed in terms of one side. If we call the side of the equilateral triangle, s, the height must be (s multiplied by square root of 3) / 2 (using the 30-60-90 relationships).


Can someone explain why the height which is the square root of 3 is being divided by 2? The explanation then states... "The area of a triangle = 1/2 × base × height, so the area of an equilateral triangle can be expressed as: 1/2 × s × (s multiplied by square root of 3) / 2 .

The question i pulled this from is asking about the area of the triangle. MGMAT's explanation does not make sense to me of why the height is being divided by 2 initially.

Thanks!!!!!!
In order to solve your problem, we need to learn some basic formulas related to the area of a triangle.
1. Area of a triangle A = (1/2)*base*height
2. Area of a triangle A = sq.rt(s*(s-a)*(s-b)*(s-c)) where s= (a+b+c)/2
In an equilateral triangle all sides are equal. So s=3a/2. Where a is the side of the triangle
Per second point, A = (sq.rt(3)/4)*a^2
Per 1st point , A = a*height/2
If you compare both of them you will get the height.
Hope this clears your confusion.


Give kudos if you find the answer helpful
Moderator:
Math Expert
105408 posts