Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Two alloys A and B are composed of two basic elements. The [#permalink]

Show Tags

30 Jun 2012, 21:15

1

This post received KUDOS

40

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

75% (hard)

Question Stats:

59% (02:16) correct 41% (02:14) wrong based on 627 sessions

HideShow timer Statistics

Two alloys A and B are composed of two basic elements. The ratios of the compositions of the two basic elements in the two alloys are 5 : 3 and 1 : 2, respectively. A new alloy X is formed by mixing the two alloys A and B in the ratio 4 : 3. What is the ratio of the composition of the two basic elements in alloy X ?

Re: Two alloys A and B are composed of two basic elements. The [#permalink]

Show Tags

01 Jul 2012, 01:33

4

This post received KUDOS

1

This post was BOOKMARKED

farukqmul wrote:

Two alloys A and B are composed of two basic elements. The ratios of the compositions of the two basic elements in the two alloys are 5 : 3 and 1 : 2, respectively. A new alloy X is formed by mixing the two alloys A and B in the ratio 4 : 3. What is the ratio of the composition of the two basic elements in alloy X ?

(A) 1 : 1 (B) 2 : 3 (C) 5 : 2 (D) 4 : 3 (E) 7 : 9

Hi,

Proportion of 1st element in A = 5/8 Proportion of 1st element in B = 1/3 let, the proportion of 1st element in mixture = x using allegations:

Attachment:

all.jpg [ 7.83 KiB | Viewed 24443 times ]

\(\frac {x-1/3}{5/8-x}= \frac 43\) on solving, x=0.5 thus, proportion of two elements in the mixture is 1:1

Two alloys A and B are composed of two basic elements. The ratios of the compositions of the two basic elements in the two alloys are 5 : 3 and 1 : 2, respectively. A new alloy X is formed by mixing the two alloys A and B in the ratio 4 : 3. What is the ratio of the composition of the two basic elements in alloy X ?

(A) 1 : 1 (B) 2 : 3 (C) 5 : 2 (D) 4 : 3 (E) 7 : 9

Responding to a pm:

When you need to find the average, it is better to use the formula in its original form: Avg = (C1*w1 + C2*w2)/(w1 + w2) Avg = [(5/8)*4 + (1/3)*3]/(4+3) = 1/2 Ratio of the 2 elements in the mixture = 1:1

Obviously the formula will work in the other form too though it is best to use that when you need to find the ratio of the weights. Using the formula in the other form: w1/w2 = (A2 - Aavg)/(Aavg - A1) element 1 in A = 5/8 element 1 in B = 1/3 element 1 in mixture = x

4/3 = (1/3 - x) / (x - 5/8) 4/3(x - 5/8) = 1/3 - x (7/3)x = 7/6 x = 1/2 (You made a calculation error)

Ratio of elements in the mixture = 1:1
_________________

Re: Two alloys A and B are composed of two basic elements. The [#permalink]

Show Tags

15 Aug 2012, 06:00

5

This post received KUDOS

2

This post was BOOKMARKED

farukqmul wrote:

Two alloys A and B are composed of two basic elements. The ratios of the compositions of the two basic elements in the two alloys are 5 : 3 and 1 : 2, respectively. A new alloy X is formed by mixing the two alloys A and B in the ratio 4 : 3. What is the ratio of the composition of the two basic elements in alloy X ?

(A) 1 : 1 (B) 2 : 3 (C) 5 : 2 (D) 4 : 3 (E) 7 : 9

Mixture A has a total of 5 + 3 = 8 parts. If in the final mixture this represents 4 parts, then the total number of parts in mixture B should be (8/4)*3 = 6. So, we should take of mixture B a quantity with 2 and 4 parts, respectively.

This will give us in the final mixture (5 + 2) : (3 + 4), which means 7:7, or 1:1.

Answer A.
_________________

PhD in Applied Mathematics Love GMAT Quant questions and running.

Re: Two alloys A and B are composed of two basic elements. The [#permalink]

Show Tags

29 Oct 2012, 02:48

2

This post received KUDOS

Alloy A: Since F:S = 5:3, and 5+3=8, F/total = 5/8.

Alloy B: Since F:S = 1:2, and 1+2 = 3, F/total = 1/3.

Mixture T: A:B = 4:3. If we mix 8 units of A with 6 units of B, we get: Amount of F in alloy A = (5/8)8 = 5 units Amount of F in alloy B = (1/3)6 = 2 units. (Total F)/(Mixture T) = (5+2)/(8+6) = 7/14 = 1/2. Since 1/2 of the mixture is composed of F, F:S = 1:1.

Re: Two alloys A and B are composed of two basic elements. The [#permalink]

Show Tags

16 Dec 2012, 04:01

let the two elements be 1 and 2,element 1 in alloy A =5/8 , element 1 in alloy B=1/3, element 1 in mixture=x, therefore 4/3=(1/3-x)/(5/8-x)= ½ so the answer is (A).
_________________

Re: Two alloys A and B are composed of two basic elements. The [#permalink]

Show Tags

16 Dec 2012, 04:07

1

This post was BOOKMARKED

Another approach to this problem is by weighted average.

In such problems , it becomes easier if we stick to one metal only. So the compostion of first metal in A is 5/8 and and in B is 1/3. So when we combine A and B, the compostion will be between 5/8 and 1/3.

Now in the diagram attached: The "distance" between the compositions of first metal in A and B is 7/24. The composition of the final mixture is given as 4:3 i.e. A's 4 parts and B's 3 parts. But when we interpret in the distance format, the sequence flips i.e. the distance between final mixture and A will be 3 units and that of between final mixture and B will be 4 units.

Now to calculate the compostion of the first metal in X, add the 4 units to 1/3. i.e. \(4/7 *\)\(7/24\) \(+1/3\) OR subtract 3 units from 5/8 i.e. \(5/8 -\) \(4/7\)\(* 7/24\). This will come out as 50%. Therefore the other metal will also constitute 50%. Hence the ratio is 1:1. +1A

Re: Two alloys A and B are composed of two basic elements. The [#permalink]

Show Tags

10 Apr 2013, 21:19

VeritasPrepKarishma wrote:

farukqmul wrote:

Two alloys A and B are composed of two basic elements. The ratios of the compositions of the two basic elements in the two alloys are 5 : 3 and 1 : 2, respectively. A new alloy X is formed by mixing the two alloys A and B in the ratio 4 : 3. What is the ratio of the composition of the two basic elements in alloy X ?

(A) 1 : 1 (B) 2 : 3 (C) 5 : 2 (D) 4 : 3 (E) 7 : 9

Responding to a pm:

When you need to find the average, it is better to use the formula in its original form: Avg = (C1*w1 + C2*w2)/(w1 + w2) Avg = [(5/8)*4 + (1/3)*3]/(4+3) = 1/2 Ratio of the 2 elements in the mixture = 1:1

Obviously the formula will work in the other form too though it is best to use that when you need to find the ratio of the weights. Using the formula in the other form: w1/w2 = (A2 - Aavg)/(Aavg - A1) element 1 in A = 5/8 element 1 in B = 1/3 element 1 in mixture = x

4/3 = (1/3 - x) / (x - 5/8) 4/3(x - 5/8) = 1/3 - x (7/3)x = 7/6 x = 1/2 (You made a calculation error)

Ratio of elements in the mixture = 1:1

Dear karishma

thanks a lot. that's a great solution but one point is subtle to me. would you please explain which part of the question indicates that we should go with weighted average formula? thanks again in advance. Regards

thanks a lot. that's a great solution but one point is subtle to me. would you please explain which part of the question indicates that we should go with weighted average formula? thanks again in advance. Regards

Posted from my mobile device

It's a matter of practice. You will never be given 'find the weighted average'. When you have two things (classes, groups, mixtures, solutions) and they talk about the total, average or something, that should give you a hint that weighted average might work here.
_________________

Re: Two alloys A and B are composed of two basic elements. The [#permalink]

Show Tags

13 Oct 2014, 06:40

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Re: Two alloys A and B are composed of two basic elements. The [#permalink]

Show Tags

04 Aug 2015, 18:29

VeritasPrepKarishma wrote:

farukqmul wrote:

Two alloys A and B are composed of two basic elements. The ratios of the compositions of the two basic elements in the two alloys are 5 : 3 and 1 : 2, respectively. A new alloy X is formed by mixing the two alloys A and B in the ratio 4 : 3. What is the ratio of the composition of the two basic elements in alloy X ?

(A) 1 : 1 (B) 2 : 3 (C) 5 : 2 (D) 4 : 3 (E) 7 : 9

Responding to a pm:

When you need to find the average, it is better to use the formula in its original form: Avg = (C1*w1 + C2*w2)/(w1 + w2) Avg = [(5/8)*4 + (1/3)*3]/(4+3) = 1/2 Ratio of the 2 elements in the mixture = 1:1

Obviously the formula will work in the other form too though it is best to use that when you need to find the ratio of the weights. Using the formula in the other form: w1/w2 = (A2 - Aavg)/(Aavg - A1) element 1 in A = 5/8 element 1 in B = 1/3 element 1 in mixture = x

4/3 = (1/3 - x) / (x - 5/8) 4/3(x - 5/8) = 1/3 - x (7/3)x = 7/6 x = 1/2 (You made a calculation error)

Ratio of elements in the mixture = 1:1

Hi,

Thanks alot for the great solution, just one quick question, if we are getting the x (which is the amount of A in mixture) = 1/2, then how are we getting to ratio as 1:1? Is it because 1/2 stands for A/A+B so 1/1+1 and hence A and B are in ration 1:1

Two alloys A and B are composed of two basic elements. The ratios of the compositions of the two basic elements in the two alloys are 5 : 3 and 1 : 2, respectively. A new alloy X is formed by mixing the two alloys A and B in the ratio 4 : 3. What is the ratio of the composition of the two basic elements in alloy X ?

(A) 1 : 1 (B) 2 : 3 (C) 5 : 2 (D) 4 : 3 (E) 7 : 9

Responding to a pm:

When you need to find the average, it is better to use the formula in its original form: Avg = (C1*w1 + C2*w2)/(w1 + w2) Avg = [(5/8)*4 + (1/3)*3]/(4+3) = 1/2 Ratio of the 2 elements in the mixture = 1:1

Obviously the formula will work in the other form too though it is best to use that when you need to find the ratio of the weights. Using the formula in the other form: w1/w2 = (A2 - Aavg)/(Aavg - A1) element 1 in A = 5/8 element 1 in B = 1/3 element 1 in mixture = x

4/3 = (1/3 - x) / (x - 5/8) 4/3(x - 5/8) = 1/3 - x (7/3)x = 7/6 x = 1/2 (You made a calculation error)

Ratio of elements in the mixture = 1:1

Hi,

Thanks alot for the great solution, just one quick question, if we are getting the x (which is the amount of A in mixture) = 1/2, then how are we getting to ratio as 1:1? Is it because 1/2 stands for A/A+B so 1/1+1 and hence A and B are in ration 1:1

Thanks in advance!

Yes, element 1 in mixture is element 1 in total. So element 1 is 1 part out of 2 total parts. The other part must be the other basic element.
_________________

Re: Two alloys A and B are composed of two basic elements. The [#permalink]

Show Tags

09 Oct 2016, 10:54

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Two alloys A and B are composed of two basic elements. The ratios of the compositions of the two basic elements in the two alloys are 5 : 3 and 1 : 2, respectively. A new alloy X is formed by mixing the two alloys A and B in the ratio 4 : 3. What is the ratio of the composition of the two basic elements in alloy X ?

(A) 1 : 1 (B) 2 : 3 (C) 5 : 2 (D) 4 : 3 (E) 7 : 9

Responding to a pm:

When you need to find the average, it is better to use the formula in its original form: Avg = (C1*w1 + C2*w2)/(w1 + w2) Avg = [(5/8)*4 + (1/3)*3]/(4+3) = 1/2 Ratio of the 2 elements in the mixture = 1:1

Obviously the formula will work in the other form too though it is best to use that when you need to find the ratio of the weights. Using the formula in the other form: w1/w2 = (A2 - Aavg)/(Aavg - A1) element 1 in A = 5/8 element 1 in B = 1/3 element 1 in mixture = x

4/3 = (1/3 - x) / (x - 5/8) 4/3(x - 5/8) = 1/3 - x (7/3)x = 7/6 x = 1/2 (You made a calculation error)

Ratio of elements in the mixture = 1:1

Responding to a pm:

Quote:

I don't completely understand your solution. Why did you do Avg = [(5/8)*4 + (1/3)*3]/(4+3) rather than Avg = [(5/8)*4 + (1/3)*4]/(4+3)? The 1/3 also refers to the first part of the ratio doesn't it?

The formula is

\(Cavg = \frac{(C1*w1 + C2*w2)}{(w1 + w2)}\)

The ratios of the compositions of the two basic elements in the two alloys are 5 : 3 (first element is 5/8 of Total) and 1 : 2 (first element is 1/3 of Total)

"A new alloy X is formed by mixing the two alloys A and B in the ratio 4 : 3" - This implies that w1:w2 = 4:3

Two alloys A and B are composed of two basic elements. The [#permalink]

Show Tags

05 May 2017, 08:30

farukqmul wrote:

Two alloys A and B are composed of two basic elements. The ratios of the compositions of the two basic elements in the two alloys are 5 : 3 and 1 : 2, respectively. A new alloy X is formed by mixing the two alloys A and B in the ratio 4 : 3. What is the ratio of the composition of the two basic elements in alloy X ?

(A) 1 : 1 (B) 2 : 3 (C) 5 : 2 (D) 4 : 3 (E) 7 : 9

Edit: Source -> NOVA.

Alloy A 5:3 or \(\frac{5}{8}\) of Element 1

Alloy B 1:2 or \(\frac{1}{3}\) of Element 1

Alloy X 4:3 or \(\frac{4}{7}\) of Alloy A and \(\frac{3}{7}\) of Alloy B

Amount of Element 1 in both Alloys (A + B) \(\frac{4}{7}\) of the mixture will be \(\frac{5}{8}\) Element 1 + the remaining \(\frac{3}{7}\) of the mixture will be \(\frac{1}{3}\) of Element 1

Math \(\frac{4}{7}\) X \(\frac{5}{8}\) + \(\frac{3}{7}\) X \(\frac{1}{3}\) = \(\frac{28}{56}\) is Element 1 = a 1:1 ratio

Two alloys A and B are composed of two basic elements. The ratios of the compositions of the two basic elements in the two alloys are 5 : 3 and 1 : 2, respectively. A new alloy X is formed by mixing the two alloys A and B in the ratio 4 : 3. What is the ratio of the composition of the two basic elements in alloy X ?

(A) 1 : 1 (B) 2 : 3 (C) 5 : 2 (D) 4 : 3 (E) 7 : 9

Responding to a pm:

When you need to find the average, it is better to use the formula in its original form: Avg = (C1*w1 + C2*w2)/(w1 + w2) Avg = [(5/8)*4 + (1/3)*3]/(4+3) = 1/2 Ratio of the 2 elements in the mixture = 1:1

Obviously the formula will work in the other form too though it is best to use that when you need to find the ratio of the weights. Using the formula in the other form: w1/w2 = (A2 - Aavg)/(Aavg - A1) element 1 in A = 5/8 element 1 in B = 1/3 element 1 in mixture = x

4/3 = (1/3 - x) / (x - 5/8) 4/3(x - 5/8) = 1/3 - x (7/3)x = 7/6 x = 1/2 (You made a calculation error)

Ratio of elements in the mixture = 1:1

Responding to a pm:

Quote:

I am trying to understand the approach to the solution you posted to the Alloy-composition question above (I know it is quite a while ago..). I understand how you get to the equation [5/8*4+1/3*3]/3+4 since 4 parts of the new mix need to contain 5/8 of element 1 from alloy A (correct? ) and the solution 1/2 but I don't understand what the 1/2 actually represent and how you the get to a ratio of 1:1. Could you please help me and explain the reasoning?

I unfortunately also do not understand how you get to the equation 4/3 = (1/3 - x) / (x - 5/8) (ie. Why do you subtract x from 1/3 to represent alloy a? )

We have a standard weighted average formula: Avg = (C1*w1 + C2*w2)/(w1 + w2) We can rearrange the terms in this formula to give us: w1/w2 = (A2 - Aavg)/(Aavg - A1)

Both are the same formula. A is the quantity that you need to average. w1 and w2 are the weights in which this quantity is mixed.

We are given the following: The ratios of the compositions of the two basic elements in the two alloys are 5 : 3 and 1 : 2, respectively. So we can say that the concentration of the first element is 5/(5+3) = 5/8 of alloy A and the concentration of the first element in alloy B is 1/(1+2) = 1/3 of alloy B. We need to find the average concentration Aavg.

A new alloy X is formed by mixing the two alloys A and B in the ratio 4 : 3. The two allows are mixed in the ratio 4:3. So w1/w2 = 4/3

Two alloys A and B are composed of two basic elements. The ratios of the compositions of the two basic elements in the two alloys are 5 : 3 and 1 : 2, respectively. A new alloy X is formed by mixing the two alloys A and B in the ratio 4 : 3. What is the ratio of the composition of the two basic elements in alloy X ?

(A) 1 : 1 (B) 2 : 3 (C) 5 : 2 (D) 4 : 3 (E) 7 : 9

Edit: Source -> NOVA.

1. Let the quantity of A and B be 4x and 3x

2. (Quantity of Alloy A *Proportion of element 1 + Quantity of Alloy B * proportion of element 1) / ( Quantity of Alloy A *Proportion of element 2 + Quantity of Alloy B * proportion of element 2) = Quantity of element 1 in mixture / Quantity of element 2 in mixture