Last visit was: 12 Sep 2024, 03:04 It is currently 12 Sep 2024, 03:04
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
SORT BY:
Date
Tags:
Show Tags
Hide Tags
Intern
Intern
Joined: 18 Oct 2009
Posts: 42
Own Kudos [?]: 1521 [129]
Given Kudos: 3
Concentration: Finance
Schools:Kellogg
 Q50  V45
Send PM
Most Helpful Reply
User avatar
Manager
Manager
Joined: 29 Oct 2009
Posts: 126
Own Kudos [?]: 2916 [36]
Given Kudos: 18
GMAT 1: 750 Q50 V42
Send PM
Math Expert
Joined: 02 Sep 2009
Posts: 95475
Own Kudos [?]: 657850 [30]
Given Kudos: 87247
Send PM
General Discussion
Math Expert
Joined: 02 Sep 2009
Posts: 95475
Own Kudos [?]: 657850 [11]
Given Kudos: 87247
Send PM
Re: What is the greatest possible area of a triangular region with one ver [#permalink]
8
Kudos
3
Bookmarks
Expert Reply
sriharimurthy
[Note to Bunuel : I think this one might have been missed in the post on triangles?]

This is a useful property, thank you. +1.

For an isosceles triangle with given length of equal sides right triangle (included angle) has the largest area.

And vise-versa:

Right triangle with a given hypotenuse has the largest area when it's an isosceles triangle.
User avatar
Manager
Manager
Joined: 21 Jan 2010
Posts: 114
Own Kudos [?]: 333 [2]
Given Kudos: 38
Send PM
Re: What is the greatest possible area of a triangular region with one ver [#permalink]
2
Kudos
Can I see it this way?

If you know what is function sin, it has a range from -1 to 1:

Since area of triangle = 1/2 x (side a x side b x sin C), where C is the angle in between side a and b.
The area would be at its maximum when C equals 90 degrees, i.e. sin C = 1.

In this case, we can take side a and side b the radii and C 90 degrees:
1/2 x 1 x 1 x 1 = 1/2

Hope this helps.
User avatar
Retired Moderator
Joined: 02 Sep 2010
Posts: 612
Own Kudos [?]: 2989 [0]
Given Kudos: 25
Location: London
 Q51  V41
Send PM
Re: What is the greatest possible area of a triangular region with one ver [#permalink]
satishreddy
ps question
Trignometry based solution

Note that such a triangle is always isosceles, with two sides=1 (the radius of the circle).
Let the third side be b (the base) and the height be h.
If you imagine the angle subtended at the centre by the thrid side, and let this angle be x.

The base would be given by 2*sin(x/2) and the height by cos(x/2); where x is a number between 0 and 180

The area is therefore, sin(z)*cos(z), where z is between 0 and 90.
We can simplify this further as \(sin(z)*\sqrt{1-sin^2(z)}\), with z between 0 and 90, for which range sin(z) is between 0 and 1.

So the answer is maxima of the function \(f(y)=y*\sqrt{1-y^2}\) with y between 0 and 1.
This is equivalent to finding the point which will maximize the square of this function \(g(y)=y^2(1-y^2)\) which is easy to do taking the first derivative, \(g'(y)=2y-4y^3\), which gives the point as \(y=\frac{1}{\sqrt{2}}\).

If we plug it into f(y), the answer is area = 0.5 .. Hence answer is (b)

Basically the solution above proves that for an isosceles triangle, when the length of the equal sides is fixed, the area is maximum when the triangle is a right angled triangle (\(y=sin(x/2)=\frac{1}{\sqrt{2}}\) means x=90). This is a result you will most liekly see being quoted on alternate solutions.
Tutor
Joined: 16 Oct 2010
Posts: 15298
Own Kudos [?]: 67986 [3]
Given Kudos: 442
Location: Pune, India
Send PM
Re: What is the greatest possible area of a triangular region with one ver [#permalink]
1
Kudos
2
Bookmarks
Expert Reply
Interesting Question!
As CalvinHobbes suggested, the easiest way to deal with it might be through the area formula:
Area = (1/2)abSinQ
a and b are the lengths of two sides of the triangle and Q is the included angle between sides a and b.
(It is anyway good to remember this area formula if you are a little comfortable with trigonometry because it could turn your otherwise tricky question into a simple application.)

If we want to maximize area, we need to maximize Sin Q since a and b are already 1.
Maximum value of Sin Q is 1 which happens when Q = 90 degrees.

Therefore, maximum area of the triangle will be (1/2).1.1.1 = (1/2)
avatar
Intern
Intern
Joined: 05 Aug 2012
Posts: 15
Own Kudos [?]: 12 [0]
Given Kudos: 8
Concentration: Finance, Economics
GMAT Date: 01-15-2014
GPA: 2.62
WE:Research (Investment Banking)
Send PM
Re: What is the greatest possible area of a triangular region with one ver [#permalink]
I solved the question the following way..

I gathered the greatest possible triangle has a 90 degree angle where 2 sides meet (each length 1, the radius)
This means the 3rd side will be \(\sqrt{2}\) (90/45/45 rule)

It's base will be \(\sqrt{2}\) and its height will be \(\sqrt{2}\)/\(2\)

So base times height over 2 looks as such-

\(\sqrt{2}*\sqrt{2}/2\) all over 2

which yields 1/2.

am I getting the right answer the wrong way?
Tutor
Joined: 16 Oct 2010
Posts: 15298
Own Kudos [?]: 67986 [10]
Given Kudos: 442
Location: Pune, India
Send PM
Re: What is the greatest possible area of a triangular region with one ver [#permalink]
7
Kudos
3
Bookmarks
Expert Reply
bscharm
I solved the question the following way..

I gathered the greatest possible triangle has a 90 degree angle where 2 sides meet (each length 1, the radius)
This means the 3rd side will be \(\sqrt{2}\) (90/45/45 rule)

It's base will be \(\sqrt{2}\) and its height will be \(\sqrt{2}\)/\(2\)

So base times height over 2 looks as such-

\(\sqrt{2}*\sqrt{2}/2\) all over 2

which yields 1/2.

am I getting the right answer the wrong way?

I think you complicated the question for no reason even though your answer and method, both are correct (though not optimum). The most important part of the question is realizing that the triangle will be a right triangle. Once you did that, you know the two perpendicular sides of the triangle are 1 and 1 (the radii of the circle). The two perpendicular sides can very well be the base and the height. So area = (1/2)*1*1 = 1/2

In fact, this is used sometimes to find the altitude of the right triangle from 90 degree angle to hypotenuse. You equate area obtained from using the perpendicular side lengths with area obtained using hypotenuse. In this question, that will be

\((1/2)*1*1 = (1/2)*\sqrt{2}*Altitude\)
You get altitude from this.

How to realize it will be a right triangle without knowing the property:
You can do that by imagining the situation in which the area will be minimum. When the two sides overlap (i.e the angle between them is 0), the area will be 0 i.e. there will be no triangle. As you keep moving the sides away from each other, the area will increase till it eventually becomes 0 again when the angle between them is 180. So the maximum area between them will be when the angle between the sides is 90.
Attachment:
Ques3.jpg
Ques3.jpg [ 22.49 KiB | Viewed 49418 times ]
User avatar
VP
VP
Joined: 06 Sep 2013
Posts: 1332
Own Kudos [?]: 2487 [0]
Given Kudos: 355
Concentration: Finance
Send PM
Re: What is the greatest possible area of a triangular region with one ver [#permalink]
Bunuel
What is the greatest possible area of a triangular region with one vertex at the center of a circle of radius one and the other two vertices on the circle?

Clearly two sides of the triangle will be equal to the radius of 1.

Now, fix one of the sides horizontally and consider it to be the base of the triangle.

\(area=\frac{1}{2}*base*height=\frac{1}{2}*1*height=\frac{height}{2}\).

So, to maximize the area we need to maximize the height. If you visualize it, you'll see that the height will be maximized when it's also equals to the radius thus coincides with the second side (just rotate the other side to see). which means to maximize the area we should have the right triangle with right angle at the center.

\(area=\frac{1}{2}*1*1=\frac{1}{2}\).

Answer: B.

You can also refer to other solutions:
triangular-region-65317.html

Having some trouble figuring out why right isosceles triangle has greater area than equilateral triangle
Anyone would mind clarifying this?

Cheers!
J :)
Tutor
Joined: 16 Oct 2010
Posts: 15298
Own Kudos [?]: 67986 [1]
Given Kudos: 442
Location: Pune, India
Send PM
Re: What is the greatest possible area of a triangular region with one ver [#permalink]
1
Kudos
Expert Reply
jlgdr
Bunuel
What is the greatest possible area of a triangular region with one vertex at the center of a circle of radius one and the other two vertices on the circle?

Clearly two sides of the triangle will be equal to the radius of 1.

Now, fix one of the sides horizontally and consider it to be the base of the triangle.

\(area=\frac{1}{2}*base*height=\frac{1}{2}*1*height=\frac{height}{2}\).

So, to maximize the area we need to maximize the height. If you visualize it, you'll see that the height will be maximized when it's also equals to the radius thus coincides with the second side (just rotate the other side to see). which means to maximize the area we should have the right triangle with right angle at the center.

\(area=\frac{1}{2}*1*1=\frac{1}{2}\).

Answer: B.

You can also refer to other solutions:
triangular-region-65317.html

Having some trouble figuring out why right isosceles triangle has greater area than equilateral triangle
Anyone would mind clarifying this?

Cheers!
J :)

Couple of ways to think about it:

Method 1:
Say base of a triangle is 1.
Area = (1/2)*base*height = (1/2)*height

Say, another side has a fixed length of 1. You start with the first figure on top left when two sides are 1 and third side is very small and keep rotating the side of length 1. The altitude keeps increasing. You get an equilateral triangle whose altitude is \(\sqrt{3}/2 * 1\) which is less than 1. Then you still keep rotating till you get the altitude as 1 (the other side). Now altitude is max so area is max. This is a right triangle.
When you rotate further still, the altitude will start decreasing again.
Attachment:
Ques3.jpg
Ques3.jpg [ 25.95 KiB | Viewed 48924 times ]

Method 2:

Given in my post above.
Senior Manager
Senior Manager
Joined: 04 Jul 2014
Posts: 276
Own Kudos [?]: 1156 [3]
Given Kudos: 420
Location: India
GMAT 1: 640 Q44 V34
GMAT 2: 710 Q49 V37
GPA: 3.58
WE:Analyst (Accounting)
Send PM
Re: What is the greatest possible area of a triangular region with one ver [#permalink]
3
Bookmarks
I found this statement as a rule in a flashcard: "If you are given 2 sides of a triangle or a parallelogram, you can maximize the area by placing those two sides perpendicular." I had some concerns in appreciating this statement and I find it related to this question. Was able to understand the statement better when I solved this question.

For those who are unable to appreciate this statement from the flash card, hope this below example helps! Let's say we know that the 2 sides of a triangle are 4 and 3. The question asks when will the area of the triangle with 2 of these vertices be the maximum. Consider these 3 scenarios:
Attachment:
Triangles.png
Triangles.png [ 3.87 KiB | Viewed 30113 times ]
What do we see from the figure above? The triangle with 2 sides as perpendicular bisectors will have the greatest areas. If you knew this rule, this question would have been a cake walk! :)

Hope this helps! :-D
e-GMAT Representative
Joined: 04 Jan 2015
Posts: 3709
Own Kudos [?]: 17735 [1]
Given Kudos: 165
Send PM
Re: What is the greatest possible area of a triangular region with one ver [#permalink]
1
Kudos
Expert Reply
Here's how this question can be solved from the first principles, by making use of only the most basic properties:

The first step is to draw a diagram to visualize the given information. Here it is:



We've dropped a perpendicular OP on the base AB.

So, the area of the triangle OAB = \(\frac{1}{2}\)*AB*OP . . . (1)

Now, let's assume the angle AOP to be x degrees.

So, OP = OAcosx = 1*cosx = cosx . . . (2)
Similarly, AP = OAsinx = 1*sinx = sinx . . . (3)

Now, we know that the perpendicular drawn from the center of a circle to a chord bisects the chord.

So, perpendicular OP bisects the chord AB.
Therefore, AP = BP = AB/2 . . . (4)

Combining (3) and (4), we get:

AB = 2sinx . . . (5)

Using (2) and (5) in (1), we get:

Area of triangle OAB = \(\frac{1}{2}\)*(2sinx)*(cosx)

So, Area of triangle OAB = (sinx)*(cosx)

We have to maximize the area, and therefore, we've to maximize the value of (sinx)*(cosx)

When sinx is maximum (for x = 90 degrees), cosx = 0, and so, the product (sinx)*(cosx) = 0
When cosx is maximum (for x = 0 degrees), sinx = 0, and so, the product (sinx)*(cosx) = 0

It's easy to see that the product (sinx)*(cosx) will be maximum when sinx = cosx. This happens for x = 45 degrees. At this point, sinx = cosx = \(\frac{1}{\sqrt{2}}\)

Therefore, maximum area = (\(\frac{1}{\sqrt{2}}\))*(\(\frac{1}{\sqrt{2}}\)) = \(\frac{1}{2}\)

As you can see, in solving this question, we have used only three basic properties from the concepts of Triangles, Circles and Trigonometry respectively. All students preparing for the GMAT already know these three basic properties:

1. The formula for area of triangle
2. The property that the perpendicular drawn from the center of a circle to a chord bisects the chord
3. The values of sin x and cos x for x = 0 degrees, 45 degrees and 90 degrees


Takeaway from the discussion

The questions on GMAT do not test your knowledge of esoteric properties, but your ability to apply basic concepts from a variety of topics

Hope this helped! :)

Regards

Japinder
Tutor
Joined: 12 Oct 2010
Status:GMATH founder
Posts: 891
Own Kudos [?]: 1447 [1]
Given Kudos: 56
Send PM
Re: What is the greatest possible area of a triangular region with one ver [#permalink]
1
Bookmarks
Expert Reply
slingfox
What is the greatest possible area of a triangular region with one vertex at the center of a circle of radius one and the other two vertices on the circle?

A. \(\frac{\sqrt{3}}{4}\)

B. \(\frac{1}{2}\)

C. \(\frac{\pi}{4}\)

D. 1

E. \(\sqrt{2}\)




\(?\,\,\, = \,\,{S_{\Delta ABC}}\,\,\max\)

Let C be the center of the circle with unitary radius.

Without loss of generality, we may (and will) assume point A is one unit at the right of point C (as shown in the figure on the left).

For the last vertex (B), without loss of generality (in terms of exploring possible areas) there are only two possibilities:

(1) B is in the arc AD (figure in the middle) or (2) B is in the arc DE (figure on the right)

In BOTH cases we have:

\({S_{\Delta ABC}} = {{AC \cdot h} \over 2} = {h \over 2}\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,\,? = {1 \over 2}\,\,\,\,\,\,\left( {{\rm{when}}\,\,h = CD\,,\,\,{\rm{i}}{\rm{.e}}{\rm{.}},\,\,B = D} \right)\)


This solution follows the notations and rationale taught in the GMATH method.

Regards,
Fabio.
Manager
Manager
Joined: 11 Apr 2018
Posts: 107
Own Kudos [?]: 97 [0]
Given Kudos: 298
Location: India
Concentration: Entrepreneurship, Marketing
GPA: 3.7
WE:Sales (Energy and Utilities)
Send PM
Re: What is the greatest possible area of a triangular region with one ver [#permalink]
"If you are given 2 sides of a triangle or a parallelogram, you can maximize the area by placing those two sides perpendicular."
Thank you for this rule.
Intern
Intern
Joined: 16 Jun 2019
Posts: 29
Own Kudos [?]: 7 [0]
Given Kudos: 135
Location: India
Schools: Said'16
GMAT 1: 690 Q44 V40
GPA: 3.5
Send PM
Re: What is the greatest possible area of a triangular region with one ver [#permalink]
Bunuel
What is the greatest possible area of a triangular region with one vertex at the center of a circle of radius one and the other two vertices on the circle?

A. \(\frac{\sqrt{3}}{4}\)

B. \(\frac{1}{2}\)

C. \(\frac{\pi}{4}\)

D. 1

E. \(\sqrt{2}\)

Clearly two sides of the triangle will be equal to the radius of 1.

Now, fix one of the sides horizontally and consider it to be the base of the triangle.

\(area=\frac{1}{2}*base*height=\frac{1}{2}*1*height=\frac{height}{2}\).

So, to maximize the area we need to maximize the height. If you visualize it, you'll see that the height will be maximized when it's also equals to the radius thus coincides with the second side (just rotate the other side to see). which means to maximize the area we should have the right triangle with right angle at the center.

\(area=\frac{1}{2}*1*1=\frac{1}{2}\).

Answer: B.

Why is not an equilateral triangle with all sides equal to 1, wouldn't that have the maximum area? Or is it not possible to inscribe an equilateral triangle inside a circle?
Intern
Intern
Joined: 10 Mar 2020
Posts: 5
Own Kudos [?]: 8 [0]
Given Kudos: 66
Send PM
What is the greatest possible area of a triangular region with one ver [#permalink]
With once vertex at centre, other two on circumference we can compare areas with angle 90 degrees or less than 90 degrees b/w 2 isosceles sides
if 90 degrees, triangle is right isosceles triangle -->Area =1/2*1*1 =0.5
For less than 90 degrees, take example of 60 degrees, triangle becomes equilateral --> Area = sqrt(3)/4*1*1 =1.73/4 =0.43
we observe that for angle less than 90 degrees,, area would be less than what it would be when angle =90, hence largest area would be of right isosceles triangle --> 1/2 Ans
In short, we have theorem that in isosceles triangle, area enclosed is maximum when angle between the equal sides is 90 degrees
Intern
Intern
Joined: 27 May 2019
Posts: 4
Own Kudos [?]: 1 [0]
Given Kudos: 26
Location: India
GMAT 1: 730 Q50 V38
GPA: 3.3
Send PM
What is the greatest possible area of a triangular region with one ver [#permalink]
Area of triangle = [1][/2]*a*b*sin(angle between a and b). Given that two sides are between the centre of the circle to the vertices on the circle, which is the radius of the circle, implying a = b= r = 1.

Hence, Area = [1][/2]*r^2*sin[theta]. Maximum value of sin theta can be 1, assuming the angle to be 90 degrees between the two sides. Hence area = 1/2
User avatar
Non-Human User
Joined: 09 Sep 2013
Posts: 34819
Own Kudos [?]: 877 [0]
Given Kudos: 0
Send PM
Re: What is the greatest possible area of a triangular region with one ver [#permalink]
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
GMAT Club Bot
Re: What is the greatest possible area of a triangular region with one ver [#permalink]
Moderator:
Math Expert
95475 posts