Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.
Customized for You
we will pick new questions that match your level based on your Timer History
Track Your Progress
every week, we’ll send you an estimated GMAT score based on your performance
Practice Pays
we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:
Don’t miss Target Test Prep’s biggest sale of the year! Grab 25% off any Target Test Prep GMAT plan during our Black Friday sale. Just enter the coupon code BLACKFRIDAY25 at checkout to save up to $625.
Do RC/MSR passages scare you? e-GMAT is conducting a masterclass to help you learn – Learn effective reading strategies Tackle difficult RC & MSR with confidence Excel in timed test environment
Prefer video-based learning? The Target Test Prep OnDemand course is a one-of-a-kind video masterclass featuring 400 hours of lecture-style teaching by Scott Woodbury-Stewart, founder of Target Test Prep and one of the most accomplished GMAT instructors.
Be sure to select an answer first to save it in the Error Log before revealing the correct answer (OA)!
Difficulty:
(N/A)
Question Stats:
0%
(00:00)
correct 0%
(00:00)
wrong
based on 0
sessions
History
Date
Time
Result
Not Attempted Yet
Hi All!
I felt that the Kaplan book had a wrong answer for a question. I just wanted someone to verify/comment if what I think is right. The question is:
What is the minimum number of shipping boxes Company L will need in order to ship 120 rectangular packages, all of which have exactly the same dimensions? (1) The dimensions of the packages are 3 inches in length, 4 inches in depth, and 6 inches in height. (2) The volume of one shipping box is one cubic foot.
"The correct answer is C (according to the book). We need both statements to solve the problem". The book assumes that the shipping boxes are cubes, and hence the dimensions are 1 foot by 1 foot by 1 foot.
My argument is, the volume of a shipping box is 1 cu. foot. This does not mean that the box needs to be a cube. Cubic foot is just the unit of measurement. The shipping box could have measured 1 foot by 1/5 foot by 5 feet. In which case, both statements are not sufficient to solve the problem.
Please let me know your comments on this. Thanks a Lot!
~ Rrajiv
Archived Topic
Hi there,
This topic has been closed and archived due to inactivity or violation of community quality standards. No more replies are possible here.
Still interested in this question? Check out the "Best Topics" block below for a better discussion on this exact question, as well as several more related questions.
I felt that the Kaplan book had a wrong answer for a question. I just wanted someone to verify/comment if what I think is right. The question is:
What is the minimum number of shipping boxes Company L will need in order to ship 120 rectangular packages, all of which have exactly the same dimensions? (1) The dimensions of the packages are 3 inches in length, 4 inches in depth, and 6 inches in height. (2) The volume of one shipping box is one cubic foot.
"The correct answer is C (according to the book). We need both statements to solve the problem". The book assumes that the shipping boxes are cubes, and hence the dimensions are 1 foot by 1 foot by 1 foot.
My argument is, the volume of a shipping box is 1 cu. foot. This does not mean that the box needs to be a cube. Cubic foot is just the unit of measurement. The shipping box could have measured 1 foot by 1/5 foot by 5 feet. In which case, both statements are not sufficient to solve the problem.
Please let me know your comments on this. Thanks a Lot!
~ Rrajiv
Show more
I think you're right. Without knowing the real dimensions of the box, we cannot know the "fit" of the packages inside the box.
I felt that the Kaplan book had a wrong answer for a question. I just wanted someone to verify/comment if what I think is right. The question is:
What is the minimum number of shipping boxes Company L will need in order to ship 120 rectangular packages, all of which have exactly the same dimensions? (1) The dimensions of the packages are 3 inches in length, 4 inches in depth, and 6 inches in height. (2) The volume of one shipping box is one cubic foot.
"The correct answer is C (according to the book). We need both statements to solve the problem". The book assumes that the shipping boxes are cubes, and hence the dimensions are 1 foot by 1 foot by 1 foot.
My argument is, the volume of a shipping box is 1 cu. foot. This does not mean that the box needs to be a cube. Cubic foot is just the unit of measurement. The shipping box could have measured 1 foot by 1/5 foot by 5 feet. In which case, both statements are not sufficient to solve the problem.
Please let me know your comments on this. Thanks a Lot!
~ Rrajiv
Show more
We're told the voume of the box is cubic ft. This is sufficient as we do not care how the dimensions work out. Whether its 1x1x1 or 1x1/5x5, the volume is always constant.
If we have a box that is 1 cubic ft, and each package has a volume, say 1/2 cubic ft, then we know each packing box is going to contain only 2 such packages.
I felt that the Kaplan book had a wrong answer for a question. I just wanted someone to verify/comment if what I think is right. The question is:
What is the minimum number of shipping boxes Company L will need in order to ship 120 rectangular packages, all of which have exactly the same dimensions? (1) The dimensions of the packages are 3 inches in length, 4 inches in depth, and 6 inches in height. (2) The volume of one shipping box is one cubic foot.
"The correct answer is C (according to the book). We need both statements to solve the problem". The book assumes that the shipping boxes are cubes, and hence the dimensions are 1 foot by 1 foot by 1 foot.
My argument is, the volume of a shipping box is 1 cu. foot. This does not mean that the box needs to be a cube. Cubic foot is just the unit of measurement. The shipping box could have measured 1 foot by 1/5 foot by 5 feet. In which case, both statements are not sufficient to solve the problem.
Please let me know your comments on this. Thanks a Lot!
~ Rrajiv
We're told the voume of the box is cubic ft. This is sufficient as we do not care how the dimensions work out. Whether its 1x1x1 or 1x1/5x5, the volume is always constant.
If we have a box that is 1 cubic ft, and each package has a volume, say 1/2 cubic ft, then we know each packing box is going to contain only 2 such packages.
Show more
Let me give you an example:
The package being 6"x8"x2" = 96sq in
The box being 8"x8"x3 = 192 sq in.
Still interested in this question? Check out the "Best Topics" block above for a better discussion on this exact question, as well as several more related questions.