GMAT Question of the Day: Daily via email | Daily via Instagram New to GMAT Club? Watch this Video

It is currently 08 Apr 2020, 09:39

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

What is the remainder when 43^86 is divided by 5?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Find Similar Topics 
Board of Directors
User avatar
D
Status: QA & VA Forum Moderator
Joined: 11 Jun 2011
Posts: 4873
Location: India
GPA: 3.5
WE: Business Development (Commercial Banking)
GMAT ToolKit User
Re: What is the remainder when 43^86 is divided by 5?  [#permalink]

Show Tags

New post 30 Dec 2016, 10:15
Alterego wrote:
What is the remainder when 43^86 is divided by 5?

A. 0
B. 1
C. 2
D. 3
E. 4

\(\frac{43}{5}\) = \(Remainer\) \(3\)

We know, \(\frac{3^4}{5}\) = \(Remainer\) \(1\)

Now, \(3^{86} = 3^{84}*3^2\)

\(\frac{3^2}{5}\) = \(Remainer\) \(4\)

Hence, the correct answer will be (E) 4

_________________
Thanks and Regards

Abhishek....

PLEASE FOLLOW THE RULES FOR POSTING IN QA AND VA FORUM AND USE SEARCH FUNCTION BEFORE POSTING NEW QUESTIONS

How to use Search Function in GMAT Club | Rules for Posting in QA forum | Writing Mathematical Formulas |Rules for Posting in VA forum | Request Expert's Reply ( VA Forum Only )
Manager
Manager
avatar
B
Joined: 09 Aug 2016
Posts: 61
Re: What is the remainder when 43^86 is divided by 5?  [#permalink]

Show Tags

New post 14 Jan 2017, 08:53
Bunuel wrote:
What is the remainder when 43^86 is divided by 5?
A. 0
B. 1
C. 2
D. 3
E. 4

Notice that \(43^{86}=(40+3)^{86}\). Now, if we expand this expression, all terms but the last one will have 40 as multiple a


V.Good explanation as always but I would like to add some explanation for the above statement:

Expanding (40+3) ^ 86 means simply that you do (40+3) (40+3) (40+3) ...etc 86 times. Simply if you do all the multiplication you will end up with terms that are mul(40) apart from one which will be mul(3)... perhaps this doesn't make sense much but check the following example:

E.g. (40+3)^2 = (40+3)*(40+3) = 40*40 + 40*3 + 3*40 + 3*3 .... Indeed all the terms of this equation are multiples of 40 apart from the last term 3*3

This approach applies to any powers as for example (40+3)^3 and so on.
Director
Director
User avatar
D
Affiliations: IIT Dhanbad
Joined: 13 Mar 2017
Posts: 718
Location: India
Concentration: General Management, Entrepreneurship
GPA: 3.8
WE: Engineering (Energy and Utilities)
Re: What is the remainder when 43^86 is divided by 5?  [#permalink]

Show Tags

New post 14 Nov 2018, 23:37
Alterego wrote:
What is the remainder when 43^86 is divided by 5?

A. 0
B. 1
C. 2
D. 3
E. 4


[43^86]/5
= [3^86/5]
= [9^43/5]
= [-1^43/5]
= 4

Answer E
Intern
Intern
User avatar
B
Joined: 04 Nov 2018
Posts: 13
Concentration: Finance, General Management
GMAT 1: 700 Q49 V35
GMAT 2: 710 Q48 V40
GPA: 3.83
WE: Sales (Retail)
Re: What is the remainder when 43^86 is divided by 5?  [#permalink]

Show Tags

New post 28 Apr 2019, 05:01
I tried something slightly different. Would really appreciate any input on whether I'm correct on this train of thought.

\frac{43^86}{5} can be written as \frac{[45 + (-2)]^86}{5}. Since 45 can be fully divided with 5, we ignore it.

So the question stands as: what is the remainder of 2^86/5. Following the cyclicity rule, we know that 2^86 has a units digit of ..4.

Every number that ends in 4 and is divided by 5, gives a remainder of 4, so answer is E.
_________________
- GMAT Prep #1 CAT (Apr 2019) : 640 (Q48, V30)
- GMAT Prep #1 CAT (early Oct 2019 - post hiatus) : 680 (Q48, V34)
- MGMAT CAT #1 (mid Oct 2019) : 640 (Q44, V34)
- MGMAT CAT #2 (mid-to-late Oct 2019) : 610 (Q40, V34)
- GMAT Prep #2 CAT (late Oct 2019) : 720 (Q49, V40)
- MGMAT CAT #3 (early Nov 2019) : 660 (Q42, V38)
- GMAT 1 : 700 (Q49, V35)

Still not there.

If you're reading this, we've got this.
Manager
Manager
avatar
B
Joined: 02 Nov 2018
Posts: 56
Re: What is the remainder when 43^86 is divided by 5?  [#permalink]

Show Tags

New post 19 Aug 2019, 09:15
VeritasKarishma wrote:
It does work. \(43^{85}\) ends in a 3. You have a 43 outside.

You get 43*(..........3)
The last digit here will be product of the last digits 3*3 = 9
When you divide it by 5, the remainder will be 4.

The only thing is, you dont need to take a 43 out. What did you achieve by doing that?
Using cyclicity, \(43^{86}\), divide 86 by 4 to get 2. So last digit of \(43^{86}\) ends in 3^2 = 9.
When you divide it by 5, the remainder will be 4.


Can we always use the cyclicity method to do these type of remainder questions? If yes, why doesn't it work for the below:

(5^68)/7 (original link: https://gmatclub.com/forum/what-is-the- ... fl=similar)

I mean 5 has a cyclicity of 1. So the last digit of 5^68 will be a 5. Now if you divide 5 by 7 (so 5/7) you get a remainder of 5. However this isn't the correct answer? Why not?
CEO
CEO
User avatar
V
Joined: 03 Jun 2019
Posts: 2505
Location: India
GMAT 1: 690 Q50 V34
WE: Engineering (Transportation)
Premium Member Reviews Badge CAT Tests
What is the remainder when 43^86 is divided by 5?  [#permalink]

Show Tags

New post Updated on: 21 Aug 2019, 07:21
Alterego wrote:
What is the remainder when 43^86 is divided by 5?

A. 0
B. 1
C. 2
D. 3
E. 4


Asked: What is the remainder when 43^86 is divided by 5?

Remainder when 5 divides\(43^{86}= (40+3)^{86} = 3^{86} = 81^{21} * 3^2 = 9 = 4\)

IMO E

Originally posted by Kinshook on 19 Aug 2019, 09:38.
Last edited by Kinshook on 21 Aug 2019, 07:21, edited 2 times in total.
Manager
Manager
avatar
B
Joined: 02 Nov 2018
Posts: 56
Re: What is the remainder when 43^86 is divided by 5?  [#permalink]

Show Tags

New post 21 Aug 2019, 07:16
jamalabdullah100 wrote:
VeritasKarishma wrote:
It does work. \(43^{85}\) ends in a 3. You have a 43 outside.

You get 43*(..........3)
The last digit here will be product of the last digits 3*3 = 9
When you divide it by 5, the remainder will be 4.

The only thing is, you dont need to take a 43 out. What did you achieve by doing that?
Using cyclicity, \(43^{86}\), divide 86 by 4 to get 2. So last digit of \(43^{86}\) ends in 3^2 = 9.
When you divide it by 5, the remainder will be 4.


Can we always use the cyclicity method to do these type of remainder questions? If yes, why doesn't it work for the below:

(5^68)/7 (original link: https://gmatclub.com/forum/what-is-the- ... fl=similar)

I mean 5 has a cyclicity of 1. So the last digit of 5^68 will be a 5. Now if you divide 5 by 7 (so 5/7) you get a remainder of 5. However this isn't the correct answer? Why not?

Hi VeritasKarishma, could you please let me know about the above please?
Veritas Prep GMAT Instructor
User avatar
V
Joined: 16 Oct 2010
Posts: 10258
Location: Pune, India
Re: What is the remainder when 43^86 is divided by 5?  [#permalink]

Show Tags

New post 21 Aug 2019, 21:09
jamalabdullah100 wrote:
jamalabdullah100 wrote:
VeritasKarishma wrote:
It does work. \(43^{85}\) ends in a 3. You have a 43 outside.

You get 43*(..........3)
The last digit here will be product of the last digits 3*3 = 9
When you divide it by 5, the remainder will be 4.

The only thing is, you dont need to take a 43 out. What did you achieve by doing that?
Using cyclicity, \(43^{86}\), divide 86 by 4 to get 2. So last digit of \(43^{86}\) ends in 3^2 = 9.
When you divide it by 5, the remainder will be 4.


Can we always use the cyclicity method to do these type of remainder questions? If yes, why doesn't it work for the below:

(5^68)/7 (original link: https://gmatclub.com/forum/what-is-the- ... fl=similar)

I mean 5 has a cyclicity of 1. So the last digit of 5^68 will be a 5. Now if you divide 5 by 7 (so 5/7) you get a remainder of 5. However this isn't the correct answer? Why not?

Hi VeritasKarishma, could you please let me know about the above please?


Units digit gives the remainder only when the divisor is one of 2/5/10.

Check out these posts:
https://www.veritasprep.com/blog/2015/1 ... questions/
https://www.veritasprep.com/blog/2015/1 ... ns-part-2/
_________________
Karishma
Veritas Prep GMAT Instructor

Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >
GMAT Club Bot
Re: What is the remainder when 43^86 is divided by 5?   [#permalink] 21 Aug 2019, 21:09

Go to page   Previous    1   2   [ 28 posts ] 

Display posts from previous: Sort by

What is the remainder when 43^86 is divided by 5?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  





Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne