Last visit was: 19 Nov 2025, 16:39 It is currently 19 Nov 2025, 16:39
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
ajit257
Joined: 28 Aug 2010
Last visit: 08 Apr 2011
Posts: 121
Own Kudos:
4,058
 [7]
Given Kudos: 11
Posts: 121
Kudos: 4,058
 [7]
Kudos
Add Kudos
7
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
778,368
 [9]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,368
 [9]
4
Kudos
Add Kudos
5
Bookmarks
Bookmark this Post
General Discussion
avatar
cg0588
Joined: 03 Aug 2014
Last visit: 08 Oct 2015
Posts: 14
Own Kudos:
Given Kudos: 18
Posts: 14
Kudos: 3
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
EMPOWERgmatRichC
User avatar
Major Poster
Joined: 19 Dec 2014
Last visit: 31 Dec 2023
Posts: 21,784
Own Kudos:
Given Kudos: 450
Status:GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Expert
Expert reply
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Posts: 21,784
Kudos: 12,807
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hi cg0588,

You ask a good question. X and Y CAN be -1 and -7 (or vice versa). Thankfully, it's easy to prove what happens when either of those options occurs:

(X - Y)^4

First, the positive options:
X = 1, Y = 7
(1 - 7)^4 = (-6)^4 = 1296

X = 7, Y = 1
(7 - 1)^4 = (6)^4 = 1296

Now, the negative options:
X = -1, Y = -7
(-1 -[-7]) = (6)^4 = 1296

X = -7, Y = -1
(-7 - [-1]) = (-6)^4 = 1296

The result stays the SAME.

GMAT assassins aren't born, they're made,
Rich
avatar
frombelarus
Joined: 30 Jan 2020
Last visit: 03 Oct 2022
Posts: 12
Own Kudos:
Given Kudos: 222
Location: Belarus
Posts: 12
Kudos: 26
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
What is the value of (x - y)^4?

(1) The product of x and y is 7, well this one is clearly insufficient: if \(x=7\) and \(y=1\) then \((x-y)^4=6^4\) and if \(x=14\) and \(y=\frac{1}{2}\) then \((x-y)^4=(\frac{27}{2})^4\), two different answers, hence not sufficient.

(2) x and y are integers. Also insufficient.

(1)+(2) As \(x\) and \(y\) are integers and \(xy=7\) then either \(x\) and \(y\) are 1 and 7 (or vise-versa) or -1 and -7 (or vise-versa) in any case because of even power: \((x-y)^4=(7-1)^4=(1-7)^4=(-7+1)^4=(-1+7)^4=6^4\). Sufficient.

Answer: C.

But what if the question is formulated in another way:
If x and y are integers, what is the value of (x - y)^4?
(1) The product of x and y is 7.
(2) The sum of x and y is -8.

will the answer be A?
User avatar
EMPOWERgmatRichC
User avatar
Major Poster
Joined: 19 Dec 2014
Last visit: 31 Dec 2023
Posts: 21,784
Own Kudos:
Given Kudos: 450
Status:GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Expert
Expert reply
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Posts: 21,784
Kudos: 12,807
Kudos
Add Kudos
Bookmarks
Bookmark this Post
frombelarus
Bunuel
What is the value of (x - y)^4?

(1) The product of x and y is 7, well this one is clearly insufficient: if \(x=7\) and \(y=1\) then \((x-y)^4=6^4\) and if \(x=14\) and \(y=\frac{1}{2}\) then \((x-y)^4=(\frac{27}{2})^4\), two different answers, hence not sufficient.

(2) x and y are integers. Also insufficient.

(1)+(2) As \(x\) and \(y\) are integers and \(xy=7\) then either \(x\) and \(y\) are 1 and 7 (or vise-versa) or -1 and -7 (or vise-versa) in any case because of even power: \((x-y)^4=(7-1)^4=(1-7)^4=(-7+1)^4=(-1+7)^4=6^4\). Sufficient.

Answer: C.

But what if the question is formulated in another way:
If x and y are integers, what is the value of (x - y)^4?
(1) The product of x and y is 7.
(2) The sum of x and y is -8.

will the answer be A?

Hi frombelarus,

Yes - if you changed the prompt in the way that you wrote (re: we're told that X and Y have to be INTEGERS), then Fact 1 would lead to just one solution (re: 1296) - so it would be SUFFICIENT and Fact 2 would lead to several possible solutions (re: 1296 and 4096, among others) - so it would be INSUFFICIENT. In this situation, the final answer would be A.

GMAT assassins aren't born, they're made,
Rich
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,368
Kudos
Add Kudos
Bookmarks
Bookmark this Post
frombelarus
Bunuel
What is the value of (x - y)^4?

(1) The product of x and y is 7, well this one is clearly insufficient: if \(x=7\) and \(y=1\) then \((x-y)^4=6^4\) and if \(x=14\) and \(y=\frac{1}{2}\) then \((x-y)^4=(\frac{27}{2})^4\), two different answers, hence not sufficient.

(2) x and y are integers. Also insufficient.

(1)+(2) As \(x\) and \(y\) are integers and \(xy=7\) then either \(x\) and \(y\) are 1 and 7 (or vise-versa) or -1 and -7 (or vise-versa) in any case because of even power: \((x-y)^4=(7-1)^4=(1-7)^4=(-7+1)^4=(-1+7)^4=6^4\). Sufficient.

Answer: C.

But what if the question is formulated in another way:
If x and y are integers, what is the value of (x - y)^4?
(1) The product of x and y is 7.
(2) The sum of x and y is -8.

will the answer be A?

Yes, if we were given that x and y are integers, then the answer would be A. In this case from (1) we'd have that (x, y) could be (1, 7), (7, 1), (-1, -7) or (-7, -1). Each of those cases give the same value for (x - y)^4.
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 38,589
Own Kudos:
Posts: 38,589
Kudos: 1,079
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Moderators:
Math Expert
105390 posts
496 posts