Bunuel
When 12 marbles are added to a rectangular aquarium, the water in the aquarium rises 1 1/2 inches. In total, how many marbles must be added to the aquarium to raise the water 2 3/4 inches?
A. 16
B. 18
C. 20
D. 22
E. 24
\({\rm{aqua}}\,\,{\rm{dimensions}}\,\,{\rm{:}}\,\,a,b,h\,\,\,\, \Rightarrow \,\,\,\,\,{\rm{Volume}}\left( {{\rm{aqua}}} \right) = abh\)
\(M = {\rm{Volume}}\left( {{\rm{marble}}} \right)\)
\(? = x\,\,\,\,\left( {\# \,\,{\rm{marbles}}} \right)\)
\(\left\{ \matrix{\\
abh\,\,{\rm{ + }}\,\,{\rm{12}} \cdot M = \underbrace {ab}_{{\rm{i}}{{\rm{n}}^2}}\,\, \cdot \,\,\underbrace {\,\left( {{\rm{h}} + 1{1 \over 2}} \right)}_{{\rm{in}}}\,\,\,\,\, \Rightarrow \,\,\,\,\,12M = {3 \over 2}abh \hfill \cr \\
abh\,\,{\rm{ + }}\,\,x \cdot M = \underbrace {ab}_{{\rm{i}}{{\rm{n}}^2}}\,\, \cdot \,\,\underbrace {\,\left( {{\rm{h}} + 2{3 \over 4}} \right)}_{{\rm{in}}}\,\,\,\,\, \Rightarrow \,\,\,\,\,xM = {{11} \over 4}abh \hfill \cr} \right.\)
\(xM = \left[ {{{11} \over 4}abh} \right] = {{11} \over 4}\left( {{2 \over 3} \cdot 12M} \right)\,\,\,\,\,\, \Rightarrow \,\,\,\,\,? = x = 22\)
We follow the notations and rationale taught in the
GMATH method.
Regards,
Fabio.