MathRevolution wrote:
[
Math Revolution GMAT math practice question]
When \(f(x)=ax^2+bx+c (a≠0)\), is \(x+1\) a factor of \(f(x)?\)
\(1) f(1)=0\)
\(2) f(-1)=0\)
\(a \ne 0\)
\(a{x^2} + bx + c\,\,\mathop = \limits^? \,\,\left( {x + 1} \right) \cdot p\left( x \right)\,\,\,\,\,\, \Leftrightarrow \,\,\,\,a{\left( { - 1} \right)^2} + b\left( { - 1} \right) + c\,\,\mathop = \limits^? \,\,0\,\,\,\,\,\,\, \Leftrightarrow \,\,\,\,\,\,\,\boxed{b\,\,\mathop = \limits^? \,\,a + c}\)
\(\left( 1 \right)\,\,\,a + b + c = 0\,\,\,\,\,\left\{ \begin{gathered}
\,{\text{Take}}\,\,\left( {a,b,c} \right) = \left( {2,0, - 2} \right)\,\,\,\, \Rightarrow \,\,\,\left\langle {{\text{YES}}} \right\rangle \,\,\,\left( * \right)\, \hfill \\
\,{\text{Take}}\,\,\left( {a,b,c} \right) = \left( {1,2, - 3} \right)\,\,\,\,\, \Rightarrow \,\,\,\left\langle {{\text{NO}}} \right\rangle \,\,\,\left( {**} \right)\,\, \hfill \\
\end{gathered} \right.\)
\(\left( * \right)\,\,\,2{x^2} - 2 = 2\left( {x + 1} \right)\left( {x - 1} \right) = \left( {x + 1} \right) \cdot p\left( x \right)\,\,\,,\,\,\,\,p\left( x \right) = 2\left( {x - 1} \right)\)
\(\left( {**} \right)\,\,{x^2} + 2x - 3 = \left( {x - 1} \right)\left( {x + 3} \right)\)
\(\left( 2 \right)\,\,a{\left( { - 1} \right)^2} + b\left( { - 1} \right) + c = 0\,\,\,\, \Rightarrow \,\,\,\,\left\langle {{\text{YES}}} \right\rangle\)
The correct answer is therefore (B).
This solution follows the notations and rationale taught in the GMATH method.
Regards,
Fabio.
_________________
Fabio Skilnik ::
GMATH method creator (Math for the GMAT)
Our high-level "quant" preparation starts here:
https://gmath.net