Last visit was: 18 Nov 2025, 16:10 It is currently 18 Nov 2025, 16:10
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 18 Nov 2025
Posts: 105,355
Own Kudos:
Given Kudos: 99,964
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,355
Kudos: 778,072
 [16]
2
Kudos
Add Kudos
14
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 18 Nov 2025
Posts: 105,355
Own Kudos:
Given Kudos: 99,964
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,355
Kudos: 778,072
Kudos
Add Kudos
Bookmarks
Bookmark this Post
General Discussion
avatar
KumarSri
Joined: 24 Feb 2019
Last visit: 14 Apr 2022
Posts: 82
Own Kudos:
92
 [1]
Given Kudos: 18
Posts: 82
Kudos: 92
 [1]
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
User avatar
zhanbo
Joined: 27 Feb 2017
Last visit: 07 Jul 2024
Posts: 1,467
Own Kudos:
2,454
 [2]
Given Kudos: 114
Location: United States (WA)
GMAT 1: 760 Q50 V42
GMAT 2: 760 Q50 V42
GRE 1: Q169 V168
GRE 2: Q170 V170
Expert
Expert reply
GMAT 2: 760 Q50 V42
GRE 1: Q169 V168
GRE 2: Q170 V170
Posts: 1,467
Kudos: 2,454
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
My answer is (D): Either (1)or (2) is SUFFICIENT.

(1) The area of the rectangle is 226 cm^2.
Consider a square with 60 cm perimeter. Its area is 15 * 15 = 225, which is smaller than 226.
And we know that for a given rectangle of 60 cm, square yields the largest area.
So, if the area of the rectangle is 226 cm^2, its rectangle must be more than 60cm. (Otherwise, the maximum area is 225 cm^2)
SUFFICIENT

(2) The length of a diagonal of the rectangle is 30 cm.
That means the sum of the length and height of the rectangle is > 30cm.
So the perimeter of a rectangle is > 60cm.
SUFFICIENT.
User avatar
Gmatfox
Joined: 09 Jan 2015
Last visit: 17 Nov 2025
Posts: 11
Own Kudos:
34
 [2]
Given Kudos: 6
Posts: 11
Kudos: 34
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Is the perimeter of a rectangle more than 60 cm ?

(1) The area of the rectangle is 226 cm^2.
(2) The length of a diagonal of the rectangle is 30 cm.

L + W > 30 Y/N?


1) Area = 226 = LxW

We have (L+W)^2 >= 4LW = 4x226 > 4x225 = (2x15)^2 --> L + W > 30 --> Yes --> Sufficient
Notice that: (L+W)^2 >= 4LW or (L-W)^2 >= 0 is always true


2) Diagonal = 30

Let's consider half of that rectangle, we will have L + W > Diagonal = 30 (according to side inequalities in a certain triangle)
--> Yes --> Sufficient

Correct answer: D
User avatar
bidskamikaze
Joined: 07 Jan 2018
Last visit: 29 Oct 2022
Posts: 261
Own Kudos:
295
 [1]
Given Kudos: 160
Location: India
GMAT 1: 710 Q49 V38
GMAT 1: 710 Q49 V38
Posts: 261
Kudos: 295
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Is the perimeter of a rectangle more than 60 cm ?

(1) The area of the rectangle is 226 cm^2.

Concept: For a given area of quadrilateral, a square would have the smallest perimeter.
So, let us assume that the rectangle is actually a square.
If area (of square) = 226, side = 15.033 (approx)
So the perimeter would be slightly greater than 60 cm.
If a square has a greater perimeter than 60, a rectangle would definitely have a perimeter > 60
Sufficient.


(2) The length of a diagonal of the rectangle is 30 cm.

If length = l and Breadth = b
\(l^2 + b^2\) = 900
Suppose: b= 20, then l= 22.36. (perimeter 84.72 > 60)
Suppose: b= 10, then l= 28.28. (perimeter 76.56 > 60)
Suppose: b= 1, then l= 29.98. (perimeter 61.96 > 60)
Now Suppose b = 0.0001, then l = 29.9999983333 (perimeter 60.000196 > 60)
As one of the sides gets smaller and smaller, the perimeter gets closer to 60.
HOWEVER, the perimeter will ALWAYS be > 60,
This is also sufficient

Both statements individually sufficient.
Answer D
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 38,588
Own Kudos:
Posts: 38,588
Kudos: 1,079
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Moderators:
Math Expert
105355 posts
496 posts