CAMANISHPARMAR wrote:
A casino pays players with chips that are either turquoise- or violet- colored. If each turquoise- colored chip is worth t dollars, and each violet- colored chip is worth v dollars, where t and v are integers, what is the combined value of four turquoise- colored chips and two violet- colored chips?
(1) The combined value of six turquoise- colored chips and three violet- colored chips is 42 dollars.
(2) The combined value of five turquoise- colored chips and seven violet- colored chips is 53 dollars.
\({\text{chips}}\,\left\{ \begin{gathered}
\,{\text{turqu}}:\$ \,t\,\,{\text{each}} \hfill \\
\,{\text{violet}}:\$ \,v\,\,{\text{each}} \hfill \\
\end{gathered} \right.\,\,\,\,\,\,\left( {t,v \geqslant 1\,\,\,{\text{ints}}\,\,\left( * \right)} \right)\)
\(? = 4t + 2v\,\,\,\left[ \$ \right]\)
\(\left( 1 \right)\,\,6t + 3v = 42\,\,\,\left[ \$ \right]\,\,\,\,\,\mathop \Rightarrow \limits^{:\,3} \,\,2t + v = 14\,\,\,\left[ \$ \right]\,\,\,\,\,\mathop \Rightarrow \limits^{ \cdot \,2} \,\,\,\,\,? = 28\,\,\,\left[ \$ \right]\,\,\,\,\, \Rightarrow \,\,\,\,\,{\text{SUFF}}.\)
\(\left( 2 \right)\,\,5t + 7v = 53\,\,\,\left[ \$ \right]\,\,\,\,\, \Rightarrow \,\,53 - 7v = 5t\,\,,\,\,t\mathop \geqslant \limits^{\left( * \right)} 1\,\,\operatorname{int} \,\,\,\, \Rightarrow \,\,1\mathop \leqslant \limits^{\left( * \right)} v\,\,\left( {\operatorname{int} } \right) \leqslant 7\,\,\,\left( {**} \right)\)
\(\frac{{\left( {3 + 50} \right) - \left( {5v + 2v} \right)}}{5} = \operatorname{int} \,\,\,\, \Leftrightarrow \,\,\,\,\frac{{3 - 2v}}{5} = \operatorname{int} \,\,\,\,\mathop \Leftrightarrow \limits^{\left( {**} \right)} \,\,\,\,v = 4\,\,\,\,\mathop \Rightarrow \limits^{\left( 2 \right)} \,\,\,\,t = 5\)
\(\left( {t,v} \right)\,\,{\text{unique}}\,\,\,\, \Rightarrow \,\,\,{\text{?}}\,\,\,{\text{unique}}\,\,\,\,\, \Rightarrow \,\,\,\,\,{\text{SUFF}}{\text{.}}\)
This solution follows the notations and rationale taught in the GMATH method.
Regards,
Fabio.
_________________
Fabio Skilnik ::
GMATH method creator (Math for the GMAT)
Our high-level "quant" preparation starts here:
https://gmath.net