Last visit was: 19 Nov 2025, 15:45 It is currently 19 Nov 2025, 15:45
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
sm021984
Joined: 30 Jun 2011
Last visit: 27 Aug 2011
Posts: 11
Own Kudos:
98
 [84]
Given Kudos: 4
Posts: 11
Kudos: 98
 [84]
7
Kudos
Add Kudos
77
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,368
 [35]
18
Kudos
Add Kudos
17
Bookmarks
Bookmark this Post
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 19 Nov 2025
Posts: 16,267
Own Kudos:
77,001
 [18]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 77,001
 [18]
13
Kudos
Add Kudos
5
Bookmarks
Bookmark this Post
General Discussion
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 19 Nov 2025
Posts: 16,267
Own Kudos:
77,001
 [11]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 77,001
 [11]
8
Kudos
Add Kudos
3
Bookmarks
Bookmark this Post
sm021984
A dog breeder currently has 9 breeding dogs. 6 of the dogs have exactly 1 littermate, and 3 of the dogs have exactly 2 littermates. If 2 dogs are selected at random, what is the probability that both selected dogs are NOT
littermates ?

A)1/6
B)2/9
c)5/6
D)7/9
E)8/9

There are a total of 9 dogs - 3 have exactly 2 litter mates. 6 have only 1 litter mate.
Say A has two litter mates B and C. Then B also has two litter mates - A and C and C also has two litter mates A and B. There will be only one such group of 3 dogs where each has exactly 2 litter mates.
Of the remaining 6, say D's litter mate is E. Then E's litter mate is D. Neither of them will have any other litter mate.
Similarly, F's litter mate is G and G's litter mate is F.
H's litter mate is I and I's litter mate is H.

A, B, C
D, E
F, G
H, I

In how many ways can we select two dogs such that they ARE litter mates?
You can do it in two ways:

Finding number of combinations:
We can select D, E or F, G or H, I i.e. 3 ways.
Of A, B, C, we can select any two in 3C2 = 3 ways.
Total ways of selecting 2 litter mates is 3+3 = 6

Total ways of selecting 2 dogs out of 9 is 9C2 = 36

Probability of selecting 2 dogs such that they are litter mates = 6/36 = 1/6
Probability of selecting 2 dogs such that they are not litter mates = 1 - 1/6 = 5/6

Directly using probability:

Probability of selecting a dog out of D, E, F, G, H and I = 6/9 = 2/3
Probability of selecting his litter mate = 1/8

Probability of selecting a dog out of A, B and C = 3/9 = 1/3
Probability of selecting his litter mate = 2/8 = 1/4

Probability of selecting 2 litter mates = 2/3 *1/8 + 1/3*1/4 = 1/6
Probability of selecting non litter mates = 1 - 1/6 = 5/6
User avatar
garimavyas
Joined: 21 Dec 2010
Last visit: 01 Feb 2012
Posts: 260
Own Kudos:
1,553
 [1]
Given Kudos: 51
Posts: 260
Kudos: 1,553
 [1]
Kudos
Add Kudos
Bookmarks
Bookmark this Post
what is the meaning of a litter mate btw and what if on the test day i get this kind of term which i dont understand like a dogs littermate . :?
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 19 Nov 2025
Posts: 16,267
Own Kudos:
77,001
 [2]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 77,001
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
garimavyas
what is the meaning of a litter mate btw and what if on the test day i get this kind of term which i dont understand like a dogs littermate . :?

Yeah, I wasn't thrilled when I came across this word either. But it isn't hard to guess who a litter mate is. A litter mate would be a dog born in the same litter. I really doubt you will get any ambiguous terminology on the real test.
User avatar
LalaB
User avatar
Current Student
Joined: 23 Oct 2010
Last visit: 17 Jul 2016
Posts: 227
Own Kudos:
1,328
 [1]
Given Kudos: 73
Location: Azerbaijan
Concentration: Finance
Schools: HEC '15 (A)
GMAT 1: 690 Q47 V38
Schools: HEC '15 (A)
GMAT 1: 690 Q47 V38
Posts: 227
Kudos: 1,328
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
1) select no littermates from Group 1 (1-2), (3-4), (5-6)
6*2=12 (i.e. 1-3; 1-4; 1-5;1-6;2-3;2-4;2-5;2-6;3-5;3-6;4-5;4-6)

2) select no littermates from Group 2 (7-8-9) . it equals to zero

3) select a dog from Group 1 and one from Group 2 (again no littermate)

3*6=18

(12+0+18)/9C2=30/36=5/6
avatar
kapilhede17
avatar
Current Student
Joined: 14 May 2012
Last visit: 07 Apr 2015
Posts: 62
Own Kudos:
428
 [2]
Given Kudos: 15
Location: United States
Concentration: Finance, Strategy
GMAT 1: 710 Q49 V38
GPA: 3.8
WE:Corporate Finance (Finance: Venture Capital)
GMAT 1: 710 Q49 V38
Posts: 62
Kudos: 428
 [2]
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
Well i find it easy to solve these relationship problems plainly by looking at the number of relationships.

Since 6 have exactly 1 littermate ,
what u really have are 3 relationships amongst 6 .
1->2
3->4
5->6

Since 3 have exactly 2 relationships.
what u really have are 3 relationships.
7->8
8->9
7->9

Total of 6 relationships.
Probability they will be relatied = number of relationships/ total number of ways u can pick 2 from 9
= 6/ 9C2
=6/36=1/6

Hence Probablity that they are not related is = 1- 1/6 = 5/6
User avatar
EvaJager
Joined: 22 Mar 2011
Last visit: 31 Aug 2016
Posts: 514
Own Kudos:
Given Kudos: 43
WE:Science (Education)
Posts: 514
Kudos: 2,326
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Joy111
A dog breeder currently has 9 breeding dogs. 6 of the dogs have exactly 1 littermate, and 3 of the dogs have exactly 2 littermates. If 2 dogs are selected at random, what is the probability that both selected dogs are NOT littermates?

A. 1/6
B. 2/9
C. 5/6
D. 7/9
E. 8/9

We have three pairs of dogs for the 6 with exactly one littermate, and one triplet, with each having exactly two littermates.
So, in fact there are two types of dogs: those with one littermate - say A, and the others with two littermates - B.

Work with probabilities:
Choosing two dogs, we can have either one dog of type B or none (we cannot have two dogs both of type B).
The probability of choosing one dog of type B and one of type A is 3/9 * 6/8 * 2 = 1/2 (the factor of 2 for the two possibilities BA and AB).
The probability of choosing two dogs of type A which are not littermates is 6/9 * 4/8 = 1/3 (choose one A, then another A which isn't the previous one's littermate).
The required probability is 1/2 + 1/3 = 5/6.

Find the probability for the complementary event: choose AA or BB.
Probability of choosing two dogs of type A who are littermates is 6/9 * 1/8 = 1/12.
Probability of choosing two dogs of type B (who necessarily are littermates) is 3/9 * 2/8 = 1/12.
Again, we obtain 1 - (1/12 + 1/12) = 5/6.


Answer: C
User avatar
Jp27
Joined: 22 Dec 2011
Last visit: 25 Dec 2013
Posts: 173
Own Kudos:
Given Kudos: 32
Posts: 173
Kudos: 1,179
Kudos
Add Kudos
Bookmarks
Bookmark this Post
A dog breeder currently has 9 breeding dogs. 6 of the dogs have exactly 1 littermate, and 3 of the dogs have exactly 2 littermates. If 2 dogs are selected at random, what is the probability that both selected dogs are NOT
littermates ?

A)1/6
B)2/9
c)5/6
D)7/9
E)8/9

If I name the dogs A thro I then then below are the pairs ->

AB
BA
CD
DC
EF
FE
G H and I
H G and I
I G and H

To select a pair that is not a little mate then

I can select any of 9 dogs for the 1st slot....

then how to do i got about?
I could i have selected A in my 1st pick then i have remaining 7 to chose from (leaving B) = 9 * 7 / 2!

but If i select G 1st the I have 6 dogs left to chose from (leaving I and H) = 9 * 6 /2!

But this doesn't seem to work?

Bunuel please help

OA
User avatar
actleader
Joined: 25 Jun 2012
Last visit: 02 Jul 2014
Posts: 54
Own Kudos:
Given Kudos: 21
Posts: 54
Kudos: 195
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Jp27
A dog breeder currently has 9 breeding dogs. 6 of the dogs have exactly 1 littermate, and 3 of the dogs have exactly 2 littermates. If 2 dogs are selected at random, what is the probability that both selected dogs are NOT
littermates ?

A)1/6
B)2/9
c)5/6
D)7/9
E)8/9

If I name the dogs A thro I then then below are the pairs ->

AB
BA
CD
DC
EF
FE
G H and I
H G and I
I G and H

To select a pair that is not a little mate then

I can select any of 9 dogs for the 1st slot....

then how to do i got about?
I could i have selected A in my 1st pick then i have remaining 7 to chose from (leaving B) = 9 * 7 / 2!

but If i select G 1st the I have 6 dogs left to chose from (leaving I and H) = 9 * 6 /2!

But this doesn't seem to work?

Bunuel please help

OA

How to understand 6 dogs have 1 littermate and 3 dogs have 2 littermates and the question is about dogs without littermates?
:shock:
What does littermate in this case mean?
User avatar
Jp27
Joined: 22 Dec 2011
Last visit: 25 Dec 2013
Posts: 173
Own Kudos:
Given Kudos: 32
Posts: 173
Kudos: 1,179
Kudos
Add Kudos
Bookmarks
Bookmark this Post
actleader
Jp27
A dog breeder currently has 9 breeding dogs. 6 of the dogs have exactly 1 littermate, and 3 of the dogs have exactly 2 littermates. If 2 dogs are selected at random, what is the probability that both selected dogs are NOT
littermates ?

A)1/6
B)2/9
c)5/6
D)7/9
E)8/9

If I name the dogs A thro I then then below are the pairs ->

AB
BA
CD
DC
EF
FE
G H and I
H G and I
I G and H

To select a pair that is not a little mate then

I can select any of 9 dogs for the 1st slot....

then how to do i got about?
I could i have selected A in my 1st pick then i have remaining 7 to chose from (leaving B) = 9 * 7 / 2!

but If i select G 1st the I have 6 dogs left to chose from (leaving I and H) = 9 * 6 /2!

But this doesn't seem to work?

Bunuel please help

OA

How to understand 6 dogs have 1 littermate and 3 dogs have 2 littermates and the question is about dogs without littermates?
:shock:
What does littermate in this case mean?

I just translated "littermate" to pair...
Although this is from kaplan I have seen more similar questions from Manhattan, which are quite strait forward for example:

there 8 ppl in a committee each have 1 sibling pair how many ways to select a 3 ppl who are NOT a sibling pair ->

8 * 6 * 4 / 3! = 32.
this 1 is extension of this problem with more pairs hence more difficult.
User avatar
actleader
Joined: 25 Jun 2012
Last visit: 02 Jul 2014
Posts: 54
Own Kudos:
Given Kudos: 21
Posts: 54
Kudos: 195
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Jp27
actleader
Jp27
A dog breeder currently has 9 breeding dogs. 6 of the dogs have exactly 1 littermate, and 3 of the dogs have exactly 2 littermates. If 2 dogs are selected at random, what is the probability that both selected dogs are NOT
littermates ?

A)1/6
B)2/9
c)5/6
D)7/9
E)8/9

If I name the dogs A thro I then then below are the pairs ->

AB
BA
CD
DC
EF
FE
G H and I
H G and I
I G and H

To select a pair that is not a little mate then

I can select any of 9 dogs for the 1st slot....

then how to do i got about?
I could i have selected A in my 1st pick then i have remaining 7 to chose from (leaving B) = 9 * 7 / 2!

but If i select G 1st the I have 6 dogs left to chose from (leaving I and H) = 9 * 6 /2!

But this doesn't seem to work?

Bunuel please help

OA

How to understand 6 dogs have 1 littermate and 3 dogs have 2 littermates and the question is about dogs without littermates?
:shock:
What does littermate in this case mean?

I just translated "littermate" to pair...
Although this is from kaplan I have seen more similar questions from Manhattan, which are quite strait forward for example:

there 8 ppl in a committee each have 1 sibling pair how many ways to select a 3 ppl who are NOT a sibling pair ->

8 * 6 * 4 / 3! = 32.
this 1 is extension of this problem with more pairs hence more difficult.

it is harder because of added probability conditions.
in the case with M's committees it's simply a combinatorial.

so if i've understand you rightly - thare are aditionall 6+3 littermates along with 9 dogs or I'm blunting? :?
avatar
hiteshwd
Joined: 06 Nov 2011
Last visit: 28 May 2014
Posts: 3
Own Kudos:
Given Kudos: 1
Status:Writing applications
GPA: 3.4
WE:Research (Finance: Investment Banking)
Posts: 3
Kudos: 5
Kudos
Add Kudos
Bookmarks
Bookmark this Post
VeritasPrepKarishma
Bunuel
kapilhede17
[*]A dog breeder currently has 9 breeding dogs. 6 of the dogs have exactly 1 littermate, and 3 of the dogs have exactly 2 littermates. If 2 dogs are selected at random, what is the probability that both selected dogs are NOT littermates?

A. 1/6
B. 2/9
C. 5/6
D. 7/9
E. 8/9

Please help me with a fundamental understanding:

I solved this Q using the reverse technique i.e.:
Probability of not getting any littermates = prob of not getting (a. any of littermate doubles + b. any two of littermate triplets)
= (2/9)*(7/8) + (2/9)*(7/8) + (2/9)*(7/8) + (3/9)*(6/8)
= 7/12 + 1/4
= 5/6

So, the below method should work as well:
= (2C1*7C1)*3 / 9C2 + (3C1*6C1) / 9C2

But, it does not, I guess there is some problem with 9C2, because if I replace the same with 9*8, the equation becomes the same as above

I am not able to point out the fundamental flaw in 9C2 method as we use it quite often in similar Qs

For eg:
A 10-member student leadership committee consists of 4 juniors and 6 seniors. Exactly 6 students will be selected from this group to attend a national convention. What is the probability that at least 3 seniors are selected for the committee?

Sol:
= 1- (4C4*6C2) / 10C6
= 13/14


Kindly help me to clear this fundamental flaw in my understanding. I have been banging my head over this for few hours:)
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 19 Nov 2025
Posts: 16,267
Own Kudos:
77,001
 [1]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 77,001
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
hiteshwd

Please help me with a fundamental understanding:

I solved this Q using the reverse technique i.e.:
Probability of not getting any littermates = prob of not getting (a. any of littermate doubles + b. any two of littermate triplets)
= (2/9)*(7*8) + (2/9)*(7*8) + (2/9)*(7*8) + (3/9)*(6*8)
= 7/12 + 1/4
= 5/6

So, the below method should work as well:
= (2C1*7C1) / 9C2 + (3C1*6C1) / 9C2

But, it does not, I guess there is some problem with 9C2, because if I replace the same with 9*8, the equation becomes the same as above

I am not able to point out the fundamental flaw in 9C2 method as we use it quite often in similar Qs

For eg:
A 10-member student leadership committee consists of 4 juniors and 6 seniors. Exactly 6 students will be selected from this group to attend a national convention. What is the probability that at least 3 seniors are selected for the committee?

Sol:
= 1- (4C4*6C2) / 10C6
= 13/14


Kindly help me to clear this fundamental flaw in my understanding. I have been banging my head over this for few hours:)

Responding to a pm:

Finding littermates is much easier than finding non-littermates. There is much less confusion. Still, you can obviously work it out the other way around too.

Non littermates can be found in two ways:

1. You select one of the 3 littermates and one of the three pairs of 2 littermates.
3C1 * 6C1 = 18 ways

2. You select two of the three pairs of 2 littermates such that they belong to different litters.
You pick any one of the 6 dogs in 6 ways (say you picked B) and then you have 4 options (since you cannot pick A now). Say, you picked C.
There are 6*4 = 24 ways.
But wait, here, you have arranged the picked dogs. You have picked BC. In a different case, you would have picked C and then B. But both these are the same. So you need to divide 24 by 2 i.e. 12 ways.

Total number of ways of picking non-littermates = 18+12 = 30

Number of ways of picking 2 dogs = 9C2 = 36

Required Probability = 30/36 = 5/6
User avatar
cledgard
Joined: 05 Nov 2012
Last visit: 19 Nov 2025
Posts: 160
Own Kudos:
Given Kudos: 71
Status:GMAT Coach
Location: Peru
GPA: 3.98
Expert
Expert reply
Posts: 160
Kudos: 356
Kudos
Add Kudos
Bookmarks
Bookmark this Post
VeritasPrepKarishma
hiteshwd

Please help me with a fundamental understanding:

I solved this Q using the reverse technique i.e.:
Probability of not getting any littermates = prob of not getting (a. any of littermate doubles + b. any two of littermate triplets)
= (2/9)*(7*8) + (2/9)*(7*8) + (2/9)*(7*8) + (3/9)*(6*8)
= 7/12 + 1/4
= 5/6

So, the below method should work as well:
= (2C1*7C1) / 9C2 + (3C1*6C1) / 9C2

But, it does not, I guess there is some problem with 9C2, because if I replace the same with 9*8, the equation becomes the same as above

I am not able to point out the fundamental flaw in 9C2 method as we use it quite often in similar Qs

For eg:
A 10-member student leadership committee consists of 4 juniors and 6 seniors. Exactly 6 students will be selected from this group to attend a national convention. What is the probability that at least 3 seniors are selected for the committee?

Sol:
= 1- (4C4*6C2) / 10C6
= 13/14


Kindly help me to clear this fundamental flaw in my understanding. I have been banging my head over this for few hours:)

Responding to a pm:

Finding littermates is much easier than finding non-littermates. There is much less confusion. Still, you can obviously work it out the other way around too.

Non littermates can be found in two ways:

1. You select one of the 3 littermates and one of the three pairs of 2 littermates.
3C1 * 6C1 = 18 ways

2. You select two of the three pairs of 2 littermates such that they belong to different litters.
You pick any one of the 6 dogs in 6 ways (say you picked B) and then you have 4 options (since you cannot pick A now). Say, you picked C.
There are 6*4 = 24 ways.
But wait, here, you have arranged the picked dogs. You have picked BC. In a different case, you would have picked C and then B. But both these are the same. So you need to divide 24 by 2 i.e. 12 ways.

Total number of ways of picking non-littermates = 18+12 = 30

Number of ways of picking 2 dogs = 9C2 = 36

Required Probability = 30/36 = 5/6


By working directly with probabilities, I found non-littermates more directly and faster.
Since there are 6 dogs with exactly 1 littermate each, then we have three pairs of littermates: (1-2), (3-4), (5-6): group A
Since there are 3 dogs with exactly 2 littermates each, then we have one triple of littermates: (7-8-9): group B.
The probability of not littermates is: 1st selection a dog from group B over 9 dogs ,
2nd selection a dog from group A over the 8 remaining dogs : 3/9 x 6/8
To this, we add the probability of 1st selection a dog from group A over 9 dogs, 2nd selection any of the other dods except for its mate over the 8 remaining dogs: 6/9 x 7/8
3/9 x 6/8 + 6/9 x 7/8 = 5/6
Choice C
User avatar
BrentGMATPrepNow
User avatar
Major Poster
Joined: 12 Sep 2015
Last visit: 31 Oct 2025
Posts: 6,739
Own Kudos:
35,354
 [1]
Given Kudos: 799
Location: Canada
Expert
Expert reply
Posts: 6,739
Kudos: 35,354
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Joy111
A dog breeder currently has 9 breeding dogs. 6 of the dogs have exactly 1 littermate, and 3 of the dogs have exactly 2 littermates. If 2 dogs are selected at random, what is the probability that both selected dogs are NOT littermates?

A. 1/6
B. 2/9
C. 5/6
D. 7/9
E. 8/9

Here's an approach using probability rules:

Let the dogs be represented by the letters A to I.
The following meets the given conditions.
- A and B are littermates
- C and D are littermates
- E and F are littermates
- G, H and I are littermates

We want to find P(selected dogs are not littermates)

For the probability approach, it helps to say that one dog is selected first and the other dog is selected second.
Notice that there are two different ways in which the two dogs are NOT littermates:
#1) 1st dog is from one of the 2-dog pairings (AB, CD, or EF) and 2nd dog is not a littermate
#2) 1st dog is from the 3-dog group (GHI) and 2nd dog is not a littermate

So, . . .
P(selected dogs are not littermates) = P(1st is from a 2-dog pairing and 2nd is not a littermate OR 1st is from the 3-dog group and 2nd is not a littermate
= P(1st is from a 2-dog pairing and 2nd is not a littermate) + P(1st is from the 3-dog group and 2nd is not a littermate)
= (6/9)(7/8) + (3/9)(6/8)
= 42/72 + 18/72
= 60/72
= 5/6
= C
User avatar
cledgard
Joined: 05 Nov 2012
Last visit: 19 Nov 2025
Posts: 160
Own Kudos:
Given Kudos: 71
Status:GMAT Coach
Location: Peru
GPA: 3.98
Expert
Expert reply
Posts: 160
Kudos: 356
Kudos
Add Kudos
Bookmarks
Bookmark this Post
GMATPrepNow
Joy111
A dog breeder currently has 9 breeding dogs. 6 of the dogs have exactly 1 littermate, and 3 of the dogs have exactly 2 littermates. If 2 dogs are selected at random, what is the probability that both selected dogs are NOT littermates?

A. 1/6
B. 2/9
C. 5/6
D. 7/9
E. 8/9

Here's an approach using probability rules:

Let the dogs be represented by the letters A to I.
The following meets the given conditions.
- A and B are littermates
- C and D are littermates
- E and F are littermates
- G, H and I are littermates

We want to find P(selected dogs are not littermates)

For the probability approach, it helps to say that one dog is selected first and the other dog is selected second.
Notice that there are two different ways in which the two dogs are NOT littermates:
#1) 1st dog is from one of the 2-dog pairings (AB, CD, or EF) and 2nd dog is not a littermate
#2) 1st dog is from the 3-dog group (GHI) and 2nd dog is not a littermate

So, . . .
P(selected dogs are not littermates) = P(1st is from a 2-dog pairing and 2nd is not a littermate OR 1st is from the 3-dog group and 2nd is not a littermate
= P(1st is from a 2-dog pairing and 2nd is not a littermate) + P(1st is from the 3-dog group and 2nd is not a littermate)
= (6/9)(7/8) + (3/9)(6/8)
= 42/72 + 18/72
= 60/72
= 5/6
= C

Exactly my point in the previous post, but you explained it with more detail.
User avatar
EMPOWERgmatRichC
User avatar
Major Poster
Joined: 19 Dec 2014
Last visit: 31 Dec 2023
Posts: 21,784
Own Kudos:
Given Kudos: 450
Status:GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Expert
Expert reply
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Posts: 21,784
Kudos: 12,807
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hi All,

This is a quirky probability question that requires that you keep track of a number of details. There are a few ways to do the math; here's how I would approach it:

We're told that there are 9 dogs, 6 of them have 1 litter mate and 3 of them have 2 litter mates. ALL of these dogs are contained within the group of 9 dogs.

So, let's call the dogs:
1 litter mate:
A & B
C & D
E & F

2 litter mates:
G, H and I

The question asks for the probability that 2 dogs, selected at random, are NOT litter mates.
I'm going to do the math in 2 calculations:

If the first dog is one of the "1 litter mate" dogs:
(6/9)
then on the next dog, (7/8) are NOT litter mates:
(6/9)(7/8) = 42/72

If the first dog is one of the "2 litter mate" dogs:
(3/9)
then on the next dog, (6/8) are NOT litter mates:
(3/9)(6/8) = 18/72

In TOTAL, (42/72) + (18/72) = 60/72 = 5/6

Final Answer:

GMAT assassins aren't born, they're made,
Rich
User avatar
NinetyFour
Joined: 22 Sep 2018
Last visit: 22 Dec 2019
Posts: 188
Own Kudos:
Given Kudos: 78
Posts: 188
Kudos: 210
Kudos
Add Kudos
Bookmarks
Bookmark this Post
sm021984
A dog breeder currently has 9 breeding dogs. 6 of the dogs have exactly 1 littermate, and 3 of the dogs have exactly 2 littermates. If 2 dogs are selected at random, what is the probability that both selected dogs are NOT littermates?

A. 1/6
B. 2/9
C. 5/6
D. 7/9
E. 8/9

My thought process if it helps anyone:

out of 9 dogs we can pair them in 36 ways or \(9C2\)

Probability we can pick a sibling + probability we don't pick a sibling = 1

To pick a sibling we have 3 pairs and one triple

So:

\(2C2 + 2C2 + 2C2 + 3C2 = 6\)

there is \(\frac{1}{6}\) chance to select a sibling

Hence \(\frac{5}{6}\) we do not select a sibling.
 1   2   
Moderators:
Math Expert
105390 posts
Tuck School Moderator
805 posts