rajeevrks27
A Farey sequence of order n is the sequence of fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to n, arranged in order of increasing size. For example, the Farey sequence of order 3 is: {0, 1/3 , 1/2, 2/3 , 1}. Is sequence S a Farey sequence?
(1) Sequence S has fewer than 10 elements.
(2) The second element of sequence S is 1/5
Important:
1. "Fractions between 0 and 1" must (and will) be considered as "fractions between 0 and 1,
both included" so that the example given satisfies the definition presented.
2. The { } notation will always denote here a
finite sequence. (In other words, the order of the elements presented is relevant.)
\(S\,\,\mathop = \limits^? \,\,{\rm{Farey}}\)
\(\left( 1 \right)\,\,\,\left\{ \matrix{\\
\,{\rm{Take}}\,\,S = \left\{ {0;{1 \over 3};{1 \over 2};{2 \over 3};1} \right\}\,\,\,\,\, \Rightarrow \,\,\,\left\langle {{\rm{YES}}} \right\rangle \,\,\,\,\,\,\left( {{\rm{given}}} \right)\,\, \hfill \cr \\
\,{\rm{Take}}\,\,S = \left\{ {0;1;{1 \over 3};{1 \over 2};{2 \over 3}} \right\}\,\,\,\,\, \Rightarrow \,\,\,\left\langle {{\rm{NO}}} \right\rangle \,\,\,\,\,\,\,\left( {{\rm{wrong}}\,\,{\rm{order}}} \right)\, \hfill \cr} \right.\)
\(\left( 2 \right)\,\,\left\{ \matrix{\\
\,{\rm{Take}}\,\,S = \left\{ {0;{1 \over 5};{2 \over 5};{3 \over 5};{4 \over 5};1;{1 \over 4};{2 \over 4} = {1 \over 2};{3 \over 4};{1 \over 3};{2 \over 3}} \right\}\,\,\,\,\, \Rightarrow \,\,\,\left\langle {{\rm{NO}}} \right\rangle \,\,\,\,\,\left( {{\rm{wrong}}\,\,{\rm{order, }}\,{\rm{although}}\,\,{1 \over 5}\,\,{\rm{IS}}\,\,{\rm{the}}\,{\rm{ second}}\,\,{\rm{here!}}} \right)\,\, \hfill \cr \\
\,{\rm{Take}}\,\,S = \left\{ {0;{1 \over 5};{2 \over 5};{3 \over 5};{4 \over 5};1;{1 \over 4};{2 \over 4} = {1 \over 2};{3 \over 4};{1 \over 3};{2 \over 3}} \right\}\,\,{\rm{but}}\,\,{\rm{rewritten}}\,\,\,{\rm{in}}\,\,{\rm{increasing}}\,\,\,{\rm{order}}\,\,\, \Rightarrow \,\,\,\left\langle {{\rm{YES}}} \right\rangle \,\,\,\,\left( {{1 \over 5}\,\,{\rm{WILL}}\,\,{\rm{BE}}\,\,{\rm{the}}\,\,{\rm{second!}}} \right)\,\, \hfill \cr} \right.\)
\(\left( {1 + 2} \right)\,\,\,\left\langle {{\rm{NO}}} \right\rangle \,\,\,\,\,\left( {{1 \over 5} \in \,\,S\,\,{\rm{Farey}}\,\,\,\, \Rightarrow \,\,\,{\rm{S}}\,\,{\rm{has}}\,\,{\rm{more}}\,\,{\rm{than}}\,\,{\rm{10}}\,\,{\rm{elements}}!} \right)\)
This solution follows the notations and rationale taught in the GMATH method.
Regards,
Fabio.