GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 16 Jan 2019, 13:18

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

## Events & Promotions

###### Events & Promotions in January
PrevNext
SuMoTuWeThFrSa
303112345
6789101112
13141516171819
20212223242526
272829303112
Open Detailed Calendar
• ### The winning strategy for a high GRE score

January 17, 2019

January 17, 2019

08:00 AM PST

09:00 AM PST

Learn the winning strategy for a high GRE score — what do people who reach a high score do differently? We're going to share insights, tips and strategies from data we've collected from over 50,000 students who used examPAL.
• ### Free GMAT Strategy Webinar

January 19, 2019

January 19, 2019

07:00 AM PST

09:00 AM PST

Aiming to score 760+? Attend this FREE session to learn how to Define your GMAT Strategy, Create your Study Plan and Master the Core Skills to excel on the GMAT.

# A group of candidates for two analyst positions consists of six people

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics
Author Message
TAGS:

### Hide Tags

Math Expert
Joined: 02 Sep 2009
Posts: 52161
A group of candidates for two analyst positions consists of six people  [#permalink]

### Show Tags

08 Apr 2015, 03:59
4
3
00:00

Difficulty:

35% (medium)

Question Stats:

73% (01:47) correct 27% (01:54) wrong based on 180 sessions

### HideShow timer Statistics

A group of candidates for two analyst positions consists of six people. If one-third of the candidates are disqualified and three new candidates are recruited to replace them, the number of ways in which the two job offers can be allocated will:

(A) Drop by 40%
(B) Remain unchanged
(C) Increase by 20%
(D) Increase by 40%
(E) Increase by 60%

Kudos for a correct solution.

_________________
Manager
Joined: 17 Nov 2013
Posts: 73
Concentration: Strategy, Healthcare
GMAT 1: 710 Q49 V38
GPA: 3.34
WE: Business Development (Health Care)
Re: A group of candidates for two analyst positions consists of six people  [#permalink]

### Show Tags

08 Apr 2015, 04:09
1
2
Initially 6 people for 2 positions, meaning
6 - 1st position
5 - 2nd position

Total combinations- 5*6 = 30

Now 1/3rd not qualified, so reduce by 2. Hence, now we have 4+3 candidates for the position.

Same as above, 7*6 for two positions will give 42 combinations. Thus, 42-30/30 = 40% increase

Posted from GMAT ToolKit
_________________

You create your own destiny.

Manager
Joined: 17 Mar 2015
Posts: 116
A group of candidates for two analyst positions consists of six people  [#permalink]

### Show Tags

08 Apr 2015, 04:43
First scenario: 2 people to pick from 6 candidates. Since we don't take into account order, the formula is $$6C2$$ which is 15 ways
Second scenario: 2 people to pick from 7 candidates. Same story, $$7C2$$ which is 21 ways
$$\frac{(21-15)}{15} = 0,4 = 40%$$ = D
Director
Joined: 07 Aug 2011
Posts: 535
Concentration: International Business, Technology
GMAT 1: 630 Q49 V27
Re: A group of candidates for two analyst positions consists of six people  [#permalink]

### Show Tags

08 Apr 2015, 05:51
Bunuel wrote:
A group of candidates for two analyst positions consists of six people. If one-third of the candidates are disqualified and three new candidates are recruited to replace them, the number of ways in which the two job offers can be allocated will:

(A) Drop by 40%
(B) Remain unchanged
(C) Increase by 20%
(D) Increase by 40%
(E) Increase by 60%

Kudos for a correct solution.

case 1: $$6C2$$= 15 ways
case 2: $$7C2$$ = 21 ways
$$\frac{(21-15)}{15} = 40%$$

answer D
_________________

Thanks,
Lucky

_______________________________________________________
Kindly press the to appreciate my post !!

Manager
Joined: 26 Dec 2012
Posts: 146
Location: United States
Concentration: Technology, Social Entrepreneurship
WE: Information Technology (Computer Software)
Re: A group of candidates for two analyst positions consists of six people  [#permalink]

### Show Tags

08 Apr 2015, 12:32
1
Total 6 candidate 2 job positions; so # of ways position can be arranged = 6C2 =15
Then 1/3 of 6 disqualified=2, and 3 new added=6-2+3=7 total # of candidate and 2 job positions; # of ways position can be allocated=7C2=21
Hence change = ((21-15)/15)*100=40 %, increase

Hence answer is D

Thanks,
Math Expert
Joined: 02 Sep 2009
Posts: 52161
Re: A group of candidates for two analyst positions consists of six people  [#permalink]

### Show Tags

13 Apr 2015, 05:26
Bunuel wrote:
A group of candidates for two analyst positions consists of six people. If one-third of the candidates are disqualified and three new candidates are recruited to replace them, the number of ways in which the two job offers can be allocated will:

(A) Drop by 40%
(B) Remain unchanged
(C) Increase by 20%
(D) Increase by 40%
(E) Increase by 60%

Kudos for a correct solution.

VERITAS PREP OFFICIAL SOLUTION:

After reading such a question, you may still not be sure what to do, but you can start piecing together the issue at hand. There are six people interviewing for two jobs, but then some will drop out and others will join, and the overall impact must be gauged. The answer choices seem to offer various increases and decreases, so the answer must be in terms of the adjustment of job offer possibilities. This makes the question seem like a combinatorics or probability question.

Looking at the information provided, we have six applicants for two positions, and then one-third of them are disqualified. This leaves us with four finalists for the two jobs (like musical chairs), but before a decision is rendered, three more applicants join. There are now seven candidates for the two jobs, yielding a net change of one new contender. From 6 to 7 people, the change would be 1/6 of the old total, or 16.7%. This is closest to answer choice C, but there is no direct match among the answer choices. Since the GMAT doesn’t provide horseshoe answer choices (unless approximation is specified), this is our first hint that we may need to dig deeper in our approach.

The questions specifically asks about “the number of ways in which the two job offers can be allocated”, which should hopefully make you realize that the question is ultimately about permutations. In the initial setup, two positions are available for six candidates, meaning we can calculate the number of possible outcomes.

The only decision we have to make is about the order mattering, and since it’s not indicated anywhere that the jobs are identical, it’s reasonable to assume we can differentiate between job 1 and job 2. Let’s say that the first job is a senior position and the second is a junior position, how many ways can we fill these openings? Anyone can take the first position, so that gives us 6 possibilities, and then anyone of the remaining choices can fill the second position, yielding another 5 possibilities. Since any of these can be combined, we get 6*5 or 30 choices. Using the permutation formula of N!/(N-K)! yields 6! /4! which is still 6*5 or 30, confirming our answer.

If there were 30 possibilities at first, the addition of a new candidate will undoubtedly increase the number of possibilities, so we can consider answer choices A and B eliminated. After the increase, we can essentially make the same calculations for 7 candidates and 2 jobs, giving us 7*6 or 42 choices. We used to have 30 choices and now we have 42, so that works out to 12 new choices out of the original 30, equivalent to a 40% increase. Answer choice D is a 40% increase, and thus exactly the correct answer.

Some of you may be asking about the assumption I made about order mattering a few paragraphs back. “Ron, Ron”, you ask, “what happens if we assume that the order doesn’t matter?” Let’s run the calculations to see. If the order doesn’t matter and we’re dealing with a combination, then we have 6 candidates for 2 positions, we will get N! / K! (N-K)! which is 6! / 2! * 4! Simplifying to 6*5 / 2 gives us 15 options instead of the previous 30. Really, these are the same options but now we divide by two because the order no longer matters (i.e. AB and BA are equivalent). The updated scenario will have 7! / 2! * 5!, which becomes 42 / 2 or 21. This is exactly half the previous number again. The delta from 15 to 21 is 6, again 40% of the initial sum of 15. Since we’re dealing with percentages, both combinations and permutations will be completely equivalent. (Ain’t math grand?)

Regardless of minor assumptions made while solving this problem, the solution will always be the same. Indeed, the hardest part of solving the problem is often determining what is being asked. Remember that there can only be one answer to the problem, and that the answer choices can help steer you in the right direction. If you know what you’re looking for, the questions on the GMAT may be somewhat vague, but your goal will be crystal clear.
_________________
Current Student
Joined: 12 Aug 2015
Posts: 2626
Schools: Boston U '20 (M)
GRE 1: Q169 V154
Re: A group of candidates for two analyst positions consists of six people  [#permalink]

### Show Tags

15 Apr 2016, 03:44
Hey @vyasak everyone is writing that two jobs can be filled in 15 and 21 ways
but should we be applying permutation here .
here a,b will be different from b,a
so the number of ways should be 30,42

Your call?
_________________

MBA Financing:- INDIAN PUBLIC BANKS vs PRODIGY FINANCE!

Getting into HOLLYWOOD with an MBA!

The MOST AFFORDABLE MBA programs!

STONECOLD's BRUTAL Mock Tests for GMAT-Quant(700+)

AVERAGE GRE Scores At The Top Business Schools!

Board of Directors
Status: QA & VA Forum Moderator
Joined: 11 Jun 2011
Posts: 4331
Location: India
GPA: 3.5
WE: Business Development (Commercial Banking)
Re: A group of candidates for two analyst positions consists of six people  [#permalink]

### Show Tags

15 Apr 2016, 09:45
stonecold wrote:
Hey @vyasak everyone is writing that two jobs can be filled in 15 and 21 ways
but should we be applying permutation here .
here a,b will be different from b,a
so the number of ways should be 30,42

Your call?

No we must apply the concept of Combination since the problem is dealing with selection.

Here is my approach -

people = 6
disq = 2
Left = 4
Added = 3

total = 7

6C2 = 15
7C2 = 21

Incr = 6

% increase is 6/15 * 100 =40% increase
_________________

Thanks and Regards

Abhishek....

PLEASE FOLLOW THE RULES FOR POSTING IN QA AND VA FORUM AND USE SEARCH FUNCTION BEFORE POSTING NEW QUESTIONS

How to use Search Function in GMAT Club | Rules for Posting in QA forum | Writing Mathematical Formulas |Rules for Posting in VA forum | Request Expert's Reply ( VA Forum Only )

Current Student
Joined: 12 Aug 2015
Posts: 2626
Schools: Boston U '20 (M)
GRE 1: Q169 V154
Re: A group of candidates for two analyst positions consists of six people  [#permalink]

### Show Tags

16 Apr 2016, 05:50
Abhishek009 wrote:
stonecold wrote:
Hey @vyasak everyone is writing that two jobs can be filled in 15 and 21 ways
but should we be applying permutation here .
here a,b will be different from b,a
so the number of ways should be 30,42

Your call?

No we must apply the concept of Combination since the problem is dealing with selection.

Here is my approach -

people = 6
disq = 2
Left = 4
Added = 3

total = 7

6C2 = 15
7C2 = 21

Incr = 6

% increase is 6/15 * 100 =40% increase

I think we need permutation here bro.
Exact same question in RD sharma 11 class
CC=> Vyshak
_________________

MBA Financing:- INDIAN PUBLIC BANKS vs PRODIGY FINANCE!

Getting into HOLLYWOOD with an MBA!

The MOST AFFORDABLE MBA programs!

STONECOLD's BRUTAL Mock Tests for GMAT-Quant(700+)

AVERAGE GRE Scores At The Top Business Schools!

Math Expert
Joined: 02 Aug 2009
Posts: 7199
A group of candidates for two analyst positions consists of six people  [#permalink]

### Show Tags

16 Apr 2016, 06:05
stonecold wrote:
Abhishek009 wrote:
stonecold wrote:
Hey @vyasak everyone is writing that two jobs can be filled in 15 and 21 ways
but should we be applying permutation here .
here a,b will be different from b,a
so the number of ways should be 30,42

Your call?

No we must apply the concept of Combination since the problem is dealing with selection.

Here is my approach -

people = 6
disq = 2
Left = 4
Added = 3

total = 7

6C2 = 15
7C2 = 21

Incr = 6

% increase is 6/15 * 100 =40% increase

I think we need permutation here bro.
Exact same question in RD sharma 11 class
CC=> Vyshak

Hi,
If the Q talks of TWO analysts position, there is no reason WHY should I take it as different positions as suggested by the Source-- ONE junior position and the OTHER senior position..
I do not think we should work on assumptions and why should we? Combinations is perfectly fine here, there is no ambiguity APART from a word 'allocated'...

Although either way answer will be same ..
_________________

1) Absolute modulus : http://gmatclub.com/forum/absolute-modulus-a-better-understanding-210849.html#p1622372
2)Combination of similar and dissimilar things : http://gmatclub.com/forum/topic215915.html
3) effects of arithmetic operations : https://gmatclub.com/forum/effects-of-arithmetic-operations-on-fractions-269413.html

GMAT online Tutor

SC Moderator
Joined: 13 Apr 2015
Posts: 1687
Location: India
Concentration: Strategy, General Management
GMAT 1: 200 Q1 V1
GPA: 4
WE: Analyst (Retail)
Re: A group of candidates for two analyst positions consists of six people  [#permalink]

### Show Tags

16 Apr 2016, 08:14
stonecold wrote:
Hey @vyasak everyone is writing that two jobs can be filled in 15 and 21 ways
but should we be applying permutation here .
here a,b will be different from b,a
so the number of ways should be 30,42

Your call?

Hi stonecold,

Chetan is right. The question does not differentiate between the 2 positions.

We have to apply permutation when the question asks us to select and arrange. Here the question just asks us to select 2 candidates for the post of the analyst. The arrangement does not matter.
Director
Joined: 12 Nov 2016
Posts: 731
Location: United States
Schools: Yale '18
GMAT 1: 650 Q43 V37
GRE 1: Q157 V158
GPA: 2.66
Re: A group of candidates for two analyst positions consists of six people  [#permalink]

### Show Tags

07 Jun 2017, 20:26
Bunuel wrote:
A group of candidates for two analyst positions consists of six people. If one-third of the candidates are disqualified and three new candidates are recruited to replace them, the number of ways in which the two job offers can be allocated will:

(A) Drop by 40%
(B) Remain unchanged
(C) Increase by 20%
(D) Increase by 40%
(E) Increase by 60%

Kudos for a correct solution.

What this question is basically asking is what is the percentage increase from the original amount of total combinations to the new amount of total combinations; the total combinations of candidates from a pool that comprises the original qualified candidates and the new qualified candidates.

6(1/3) = 2 disqualified
6(2/3) = 4 qualified ( you don't actually have to calculate this- this is just shown for the sake of understanding the problem)

6c2 = 15
7c2= 21

15(x) = 21

Now, it is important to remember you can do a percentage increase by converting the percentage and multiplying it ( a 20% increase of x is x(1.2) - or you could do 210/15 which would also give you 40 percent instead of testing answer choices repeatedly.
Target Test Prep Representative
Status: Head GMAT Instructor
Affiliations: Target Test Prep
Joined: 04 Mar 2011
Posts: 2830
Re: A group of candidates for two analyst positions consists of six people  [#permalink]

### Show Tags

08 Feb 2018, 15:51
Bunuel wrote:
A group of candidates for two analyst positions consists of six people. If one-third of the candidates are disqualified and three new candidates are recruited to replace them, the number of ways in which the two job offers can be allocated will:

(A) Drop by 40%
(B) Remain unchanged
(C) Increase by 20%
(D) Increase by 40%
(E) Increase by 60%

The number of ways to choose 2 candidates from 6 is 6C2 = 6![2!(6-2)!] = 6!/(2! 4!) = (6 x 5)/2! = 30/2 = 15. After 2 of the 6 candidates leave and 3 new candidates are recruited, there will be 7 candidates, and the number of ways to choose 2 candidates from 7 is 7C2 = 7!/[2!(7-2)!] = 7!/(2!5!) = (7 x 6)/2! = 42/2 = 21. Thus, the number of ways to choose 2 candidates is increased by

(21 - 15)/15 x 100% = 6/15 x 100% = 2/5 x 100% = 40%

Answer: D
_________________

Jeffery Miller
Head of GMAT Instruction

GMAT Quant Self-Study Course
500+ lessons 3000+ practice problems 800+ HD solutions

Re: A group of candidates for two analyst positions consists of six people &nbs [#permalink] 08 Feb 2018, 15:51
Display posts from previous: Sort by

# A group of candidates for two analyst positions consists of six people

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics

 Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.