It is currently 21 Oct 2017, 05:31

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

A Pierpont prime is any prime number p such that p = (2^k)(3^l) + 1

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Senior Manager
Senior Manager
avatar
Joined: 10 Apr 2012
Posts: 277

Kudos [?]: 1154 [0], given: 325

Location: United States
Concentration: Technology, Other
GPA: 2.44
WE: Project Management (Telecommunications)
GMAT ToolKit User Premium Member
A Pierpont prime is any prime number p such that p = (2^k)(3^l) + 1 [#permalink]

Show Tags

New post 25 Jan 2014, 07:36
11
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  95% (hard)

Question Stats:

30% (01:04) correct 70% (00:45) wrong based on 320 sessions

HideShow timer Statistics

A Pierpont prime is any prime number p such that \(p =(2^k)(3^l)+1\), where k and l are non-negative integers. If r is an integer, is r a Pierpont prime?

(1) 1 < r < 5
(2) 0 < r < 4
[Reveal] Spoiler: OA

Kudos [?]: 1154 [0], given: 325

4 KUDOS received
Senior Manager
Senior Manager
User avatar
Status: Final Lap
Joined: 25 Oct 2012
Posts: 282

Kudos [?]: 398 [4], given: 85

Concentration: General Management, Entrepreneurship
GPA: 3.54
WE: Project Management (Retail Banking)
Re: A Pierpont prime is any prime number p such that p = (2^k)(3^l) + 1 [#permalink]

Show Tags

New post 25 Jan 2014, 07:55
4
This post received
KUDOS
1
This post was
BOOKMARKED
guerrero25 wrote:
A Pierpont prime is any prime number p such that p =(2^k)(3^l)+1
, where k and l are non-negative integers. If r is an integer, is r a Pierpont prime?

A) 1 < r < 5
B)0 < r < 4


I do not have OA with me right now .


Hi,

A) 1<r<5
Since r is an integer , then the possible values that can take r are : 2,3 and 4.
r is a Pierpont prime if r = (2^k)(3^l)+1
r=2 --> r is a Pierpont prime since 2 is prime and 2 can be written as : 2 = (2^0)(3^0) + 1
r=3 --> r is a Pierpont prime since 3 is prime and 3 can be written as : 3 = (2^1)(3^0) + 1
r=4 --> r is NOT a Pierpont prime since 4 is not prime.
Hence, This statement alone is Insufficient

B) 0<r<4
Since r is an integer, then the possible values that can take r are : 1,2 and 3
AS seen in Statement 1 , 2 and 3 are Pierpont prime but 1 is not prime , hence this statement is insufficent itself

A+B)
Now, Statements combined, we should have : 1<r<4 that give r the only two possible values : 2 and 3 and both of them are Pierpont prime as seen before

Hence , the answer is Yes .
Answer : C
_________________

KUDOS is the good manner to help the entire community.

"If you don't change your life, your life will change you"

Kudos [?]: 398 [4], given: 85

Intern
Intern
avatar
Joined: 07 May 2014
Posts: 3

Kudos [?]: 3 [0], given: 0

Re: A Pierpont prime is any prime number p such that p = (2^k)(3^l) + 1 [#permalink]

Show Tags

New post 10 Aug 2014, 00:53
Rock750 wrote:
guerrero25 wrote:
A Pierpont prime is any prime number p such that p =(2^k)(3^l)+1
, where k and l are non-negative integers. If r is an integer, is r a Pierpont prime?

A) 1 < r < 5
B)0 < r < 4


I do not have OA with me right now .


Hi,

A) 1<r<5
Since r is an integer , then the possible values that can take r are : 2,3 and 4.
r is a Pierpont prime if r = (2^k)(3^l)+1
r=2 --> r is a Pierpont prime since 2 is prime and 2 can be written as : 2 = (2^0)(3^0) + 1
r=3 --> r is a Pierpont prime since 3 is prime and 3 can be written as : 3 = (2^1)(3^0) + 1
r=4 --> r is NOT a Pierpont prime since 4 is not prime.
Hence, This statement alone is Insufficient

B) 0<r<4
Since r is an integer, then the possible values that can take r are : 1,2 and 3
AS seen in Statement 1 , 2 and 3 are Pierpont prime but 1 is not prime , hence this statement is insufficent itself

A+B)
Now, Statements combined, we should have : 1<r<4 that give r the only two possible values : 2 and 3 and both of them are Pierpont prime as seen before

Hence , the answer is Yes .
Answer : C




Hi,

Can anyone explain, how can we have 1 as a solution using statement 2, since 2^0 X 3^0 + 1 = 2, so we can never reach 1. So only options left are 2 & 3 so ans should be statement B.

Kudos [?]: 3 [0], given: 0

Senior Manager
Senior Manager
avatar
Joined: 08 Apr 2012
Posts: 446

Kudos [?]: 79 [0], given: 58

Re: A Pierpont prime is any prime number p such that p = (2^k)(3^l) + 1 [#permalink]

Show Tags

New post 14 Aug 2014, 12:32
PuneetSood wrote:
Rock750 wrote:
guerrero25 wrote:
A Pierpont prime is any prime number p such that p =(2^k)(3^l)+1
, where k and l are non-negative integers. If r is an integer, is r a Pierpont prime?

A) 1 < r < 5
B)0 < r < 4


I do not have OA with me right now .


Hi,

A) 1<r<5
Since r is an integer , then the possible values that can take r are : 2,3 and 4.
r is a Pierpont prime if r = (2^k)(3^l)+1
r=2 --> r is a Pierpont prime since 2 is prime and 2 can be written as : 2 = (2^0)(3^0) + 1
r=3 --> r is a Pierpont prime since 3 is prime and 3 can be written as : 3 = (2^1)(3^0) + 1
r=4 --> r is NOT a Pierpont prime since 4 is not prime.
Hence, This statement alone is Insufficient

B) 0<r<4
Since r is an integer, then the possible values that can take r are : 1,2 and 3
AS seen in Statement 1 , 2 and 3 are Pierpont prime but 1 is not prime , hence this statement is insufficent itself

A+B)
Now, Statements combined, we should have : 1<r<4 that give r the only two possible values : 2 and 3 and both of them are Pierpont prime as seen before

Hence , the answer is Yes .
Answer : C




Hi,

Can anyone explain, how can we have 1 as a solution using statement 2, since 2^0 X 3^0 + 1 = 2, so we can never reach 1. So only options left are 2 & 3 so ans should be statement B.

As I see it, the only possibilities are:
2,3,4,5
So the correct answer is A.
Can anyone confirm this?

Kudos [?]: 79 [0], given: 58

Expert Post
1 KUDOS received
Magoosh GMAT Instructor
User avatar
G
Joined: 28 Dec 2011
Posts: 4426

Kudos [?]: 8453 [1], given: 102

Re: A Pierpont prime is any prime number p such that p = (2^k)(3^l) + 1 [#permalink]

Show Tags

New post 14 Aug 2014, 15:55
1
This post received
KUDOS
Expert's post
PuneetSood wrote:
Hi,

Can anyone explain, how can we have 1 as a solution using statement 2, since 2^0 X 3^0 + 1 = 2, so we can never reach 1. So only options left are 2 & 3 so ans should be statement B.

Dear PuneetSood,
I'm happy to respond. :-)

We CAN'T reach 1. That's the point. For any value of r, if r is prime and we can reach it using that formula, it's a Pierpont prime. But if r = 1, which is allowed by Statement #2, then we can't reach that form, and it's not prime anyway, so we get an answer of "no."
If r = 1, is r a Pierpont prime? No. By convention, 1 is not a prime number at all.
If r = 2, is r a Pierpont prime? Yes
If r = 3, is r a Pierpont prime? Yes
See:
http://magoosh.com/gmat/2012/gmat-math- ... me-number/

Keep in mind the exact logical arrangement. We are not guaranteed that the r we pick will be a Pierpont prime. Instead, we are going to pick any possible r's in that range, and for each one, ask the question, "Is it a Pierpont prime?"

Does this make sense?

ronr34 wrote:
As I see it, the only possibilities are:
2,3,4,5
So the correct answer is A.
Can anyone confirm this?

For statement #1, 1 < r < 5, the possible values of r are {2, 3, 4}. The value r = 5 is not a possibility. For these three values, we are asking the question: if r is this value, is it a Pierpoint prime?
If r = 2, is r a Pierpont prime? Yes
If r = 3, is r a Pierpont prime? Yes
If r = 4, is r a Pierpont prime? NO! It's not a prime number at all.

In order to be a Pierpoint prime, a number must
(a) be a prime number, and
(b) satisfy that equation.

There are plenty of non-prime numbers that satisfy that equation --- for starters, every power of 3 plus 1 (4, 10, 28, 82, 244, etc). If a number isn't prime, it can't be a Pierpont prime.

Does this make sense?
Mike :-)
_________________

Mike McGarry
Magoosh Test Prep

Image

Image

Kudos [?]: 8453 [1], given: 102

Manager
Manager
avatar
Joined: 08 May 2015
Posts: 104

Kudos [?]: 109 [0], given: 14

GMAT 1: 630 Q39 V38
GMAT 2: 670 Q44 V38
GMAT 3: 750 Q49 V44
Re: A Pierpont prime is any prime number p such that p = (2^k)(3^l) + 1 [#permalink]

Show Tags

New post 07 Nov 2015, 16:24
I had the same problem as PuneetSood

mikemcgarry, if 1 is prime or not is not the question here. The part I did not understood was: How can (2^k)(3^l) be 0?

Since 2^0 = 1 and 3^0 = 1, I dont see how we can get to 1+1=1. Not being able to get to 1 would make B the right answer!

Kudos [?]: 109 [0], given: 14

Expert Post
1 KUDOS received
Magoosh GMAT Instructor
User avatar
G
Joined: 28 Dec 2011
Posts: 4426

Kudos [?]: 8453 [1], given: 102

Re: A Pierpont prime is any prime number p such that p = (2^k)(3^l) + 1 [#permalink]

Show Tags

New post 08 Nov 2015, 22:24
1
This post received
KUDOS
Expert's post
Mascarfi wrote:
I had the same problem as PuneetSood

mikemcgarry, if 1 is prime or not is not the question here. The part I did not understood was: How can (2^k)(3^l) be 0?

Since 2^0 = 1 and 3^0 = 1, I dont see how we can get to 1+1=1. Not being able to get to 1 would make B the right answer!

Dear Mascarfi,
I'm happy to respond. :-) As I stated above, in order to be a Pierpont prime, an integer must satisfy two conditions:
1) it must be prime
2) it must satisfy the formula.

You are perfectly correct that r = 1 does not satisfy the formula. There is absolutely no way to get it from the formula. I was focusing on the fact that 1 is not prime because that should be immediate. You should know without a moment's reflection that 1 absolutely is not a prime number, and therefore it cannot possibly be a Pierpont prime. You see, even checking whether you can generate it with the formula is more work that you should be doing. You should immediately recognize that 1 is not prime, and that should obviate any calculations. If you have to do even a single calculation, you have done too much to determine that 1 cannot possibly be a Pierpont prime.

The fact that 1 cannot possibly be a Pierpont prime does NOT make Statement #2 sufficient by itself. You see, Statement #2 allows for three values.
r = 1 ---> Is it a Pierpont prime? NO! It's not a prime at all. (Also, we can't get it from the formula)
r = 2 ---> Is it a Pierpont prime? Yes.
r = 3 ---> Is it a Pierpont prime? Yes.
Different values of r give us different answers to the prompt, so Statement #2, alone and by itself, is not sufficient.

We need to combine the statements so that only Pierpont primes, 2 and 3, are possible values of r.

Does all this make sense?
Mike :-)
_________________

Mike McGarry
Magoosh Test Prep

Image

Image

Kudos [?]: 8453 [1], given: 102

Expert Post
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 41893

Kudos [?]: 129093 [0], given: 12194

Re: A Pierpont prime is any prime number p such that p = (2^k)(3^l) + 1 [#permalink]

Show Tags

New post 08 Nov 2015, 22:45
guerrero25 wrote:
A Pierpont prime is any prime number p such that p =(2^k)(3^l)+1, where k and l are non-negative integers. If r is an integer, is r a Pierpont prime?

(1) 1 < r < 5
(2) 0 < r < 4


Check other Special Numbers and Sequences questions in our Special Questions Directory.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 129093 [0], given: 12194

GMAT Club Legend
GMAT Club Legend
User avatar
Joined: 09 Sep 2013
Posts: 16609

Kudos [?]: 273 [0], given: 0

Premium Member
Re: A Pierpont prime is any prime number p such that p = (2^k)(3^l) + 1 [#permalink]

Show Tags

New post 15 Sep 2017, 06:34
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

Kudos [?]: 273 [0], given: 0

Intern
Intern
avatar
B
Joined: 24 Jul 2017
Posts: 46

Kudos [?]: 9 [0], given: 32

Location: India
WE: Information Technology (Computer Software)
Re: A Pierpont prime is any prime number p such that p = (2^k)(3^l) + 1 [#permalink]

Show Tags

New post 23 Sep 2017, 21:26
Hi mikemcgarry,

Although I got the point of the question, I just have a small query that while solving the question I assumed that any number of the form given in the question is a Pierpont prime and not taking into consideration that the number should also be a prime number. How can we avoid such mistakes happening in future?

Thanks in advance

Kudos [?]: 9 [0], given: 32

Expert Post
1 KUDOS received
Magoosh GMAT Instructor
User avatar
G
Joined: 28 Dec 2011
Posts: 4426

Kudos [?]: 8453 [1], given: 102

Re: A Pierpont prime is any prime number p such that p = (2^k)(3^l) + 1 [#permalink]

Show Tags

New post 24 Sep 2017, 17:36
1
This post received
KUDOS
Expert's post
devanshu92 wrote:
Hi mikemcgarry,

Although I got the point of the question, I just have a small query that while solving the question I assumed that any number of the form given in the question is a Pierpont prime and not taking into consideration that the number should also be a prime number. How can we avoid such mistakes happening in future?

Thanks in advance

Dear devanshu92,

I'm happy to respond. :-)

Here is the first sentence.
A Pierpont prime is any prime number p such that \(p=(2^k)(3^l)+1\) , where k and l are non-negative integers.

This states quite clearly that a Pierpont prime must be a prime number, not just any number that satisfies the formula.

I have two responses to your question:
1) If a GMAT Quant prompt presents words and a formula, you NEVER can skip the words and jump to the formula. You have to read every word in the prompt with the same precise attention you give each number and formula. The exact wording in Quant prompts is crucial.
2) If you read that sentence and didn't understand its implications, it may be that you need to raise your reading level to excel on GMAT Quant. See:
How to Improve Your GMAT Verbal Score

Does all this make sense?
Mike :-)
_________________

Mike McGarry
Magoosh Test Prep

Image

Image

Kudos [?]: 8453 [1], given: 102

Intern
Intern
avatar
B
Joined: 24 Jul 2017
Posts: 46

Kudos [?]: 9 [0], given: 32

Location: India
WE: Information Technology (Computer Software)
Re: A Pierpont prime is any prime number p such that p = (2^k)(3^l) + 1 [#permalink]

Show Tags

New post 25 Sep 2017, 03:01
mikemcgarry wrote:
devanshu92 wrote:
Hi mikemcgarry,

Although I got the point of the question, I just have a small query that while solving the question I assumed that any number of the form given in the question is a Pierpont prime and not taking into consideration that the number should also be a prime number. How can we avoid such mistakes happening in future?

Thanks in advance

Dear devanshu92,

I'm happy to respond. :-)

Here is the first sentence.
A Pierpont prime is any prime number p such that \(p=(2^k)(3^l)+1\) , where k and l are non-negative integers.

This states quite clearly that a Pierpont prime must be a prime number, not just any number that satisfies the formula.

I have two responses to your question:
1) If a GMAT Quant prompt presents words and a formula, you NEVER can skip the words and jump to the formula. You have to read every word in the prompt with the same precise attention you give each number and formula. The exact wording in Quant prompts is crucial.
2) If you read that sentence and didn't understand its implications, it may be that you need to raise your reading level to excel on GMAT Quant. See:
How to Improve Your GMAT Verbal Score

Does all this make sense?
Mike :-)



Thanks Mike. It perfectly makes sense. :-)

Kudos [?]: 9 [0], given: 32

Re: A Pierpont prime is any prime number p such that p = (2^k)(3^l) + 1   [#permalink] 25 Sep 2017, 03:01
Display posts from previous: Sort by

A Pierpont prime is any prime number p such that p = (2^k)(3^l) + 1

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.