GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 18 Oct 2018, 00:17

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

A right circular cone, twice as tall as it is wide at its

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Intern
Intern
avatar
Joined: 29 Sep 2009
Posts: 16
A right circular cone, twice as tall as it is wide at its  [#permalink]

Show Tags

New post 07 Oct 2009, 00:31
4
25
00:00
A
B
C
D
E

Difficulty:

  95% (hard)

Question Stats:

34% (02:27) correct 66% (02:33) wrong based on 774 sessions

HideShow timer Statistics

A right circular cone, twice as tall as it is wide at its greatest width, is pointing straight down. The cone is partially filled with water, which is dripping out of a tiny hole in the cone's tip at a rate of 2 cubic centimeters per hour. If the water were to continue to drip out at this rate, how much longer would it take for the cone to empty, assuming that no water is added to the cone and that there is no loss of water from the cone by any other means?

(1) The top surface of the water in the cone is currently \(9\pi\) square centimeters in area.
(2) The top surface of the water in the cone currently is exactly 4 centimeters below the cone's top, measuring vertically.
Most Helpful Expert Reply
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 49968
A right circular cone, twice as tall as it is wide at its  [#permalink]

Show Tags

New post 07 Oct 2009, 05:13
9
5
jax91 wrote:
(1) The top surface of the water in the cone is currently 9pi square centimeters in area. -- sufficient on its own (we can get D)
(2) The top surface of the water in the cone currently is exactly 4 centimeters below the cone's top, measuring vertically. -- sufficient on its own ( we have H)

As the ratio of diameter:hieght of any sub-cone formed in this cone will be 1:2

So we need either D or H to get the volume.

IMO D.


Disagree.

A right circular cone, twice as tall as it is wide at its greatest width, is pointing straight down. The cone is partially filled with water, which is dripping out of a tiny hole in the cone's tip at a rate of 2 cubic centimeters per hour. If the water were to continue to drip out at this rate, how much longer would it take for the cone to empty, assuming that no water is added to the cone and that there is no loss of water from the cone by any other means?

Image

H - height of cone, R radius of cone.
h - height of water in cone, r radius of top surface of water in cone.


(1) The top surface of the water in the cone is currently \(9\pi\) square centimeters in area. Top surface area of water = \(9\pi=\pi*r^2\) --> \(r=3\) --> \(\frac{R}{H}=\frac{r}{h}=\frac{1}{4}\) --> \(h=12\) --> \(V=\frac{1}{3}*\pi*r^2*h=36*\pi\) cubic centimeters.

Leak rate 2 cubic centimeters per hour --> \(time=\frac{36\pi}{2}\) hours.

Sufficient.


(2) The top surface of the water in the cone currently is exactly 4 centimeters below the cone's top, measuring vertically. Not sufficient we know that H=h+4, but h can be any value and thus the Volume can be any.


Answer: A.

Attachment:
Untitled.png
Untitled.png [ 17.59 KiB | Viewed 9047 times ]

_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

General Discussion
Manager
Manager
User avatar
Joined: 02 Jan 2009
Posts: 84
Location: India
Schools: LBS
Re: Leak of water from the cone  [#permalink]

Show Tags

New post 07 Oct 2009, 01:53
(1) The top surface of the water in the cone is currently 9pi square centimeters in area. -- sufficient on its own (we can get D)
(2) The top surface of the water in the cone currently is exactly 4 centimeters below the cone's top, measuring vertically. -- sufficient on its own ( we have H)

As the ratio of diameter:hieght of any sub-cone formed in this cone will be 1:2

So we need either D or H to get the volume.

IMO D.
_________________

The Legion dies, it does not surrender.

Intern
Intern
avatar
Joined: 27 Jun 2011
Posts: 1
Re: Leak of water from the cone  [#permalink]

Show Tags

New post 30 Jun 2011, 23:03
It cant be A cause the question says, e cone is partially filled with water.

A can be true only when the cone is fully filled.
Intern
Intern
User avatar
Joined: 29 Jun 2011
Posts: 12
Location: Ireland
Re: Leak of water from the cone  [#permalink]

Show Tags

New post 01 Jul 2011, 04:06
1
svikram wrote:
It cant be A cause the question says, e cone is partially filled with water.

A can be true only when the cone is fully filled.


If we know the ratio for height:width for any volume in a cone, then that ratio applies to all volumes. This rule is due to the fact that the angles in the cone stay constant when the volume changes. Statement 1 gives us the area at the top of the water. This allows us to find the water volume, using the height:width ratio provided, and subsequently the rate of leaking. A is the answer.
_________________

http://www.testprepdublin.com

For the best GMAT, GRE, and SAT preparation.

Manager
Manager
avatar
Joined: 27 Dec 2011
Posts: 60
Re: A right circular cone, twice as tall as it is wide at its  [#permalink]

Show Tags

New post 19 Aug 2012, 01:28
hi Bunuel,
how did you get to the ratio:
R/H=r/h=1/4 ??
Can you please elaborate?
thanks!!
Manager
Manager
avatar
Joined: 04 Apr 2013
Posts: 133
Re: A right circular cone, twice as tall as it is wide at its  [#permalink]

Show Tags

New post 23 Jul 2013, 06:05
kartik222 wrote:
hi Bunuel,
how did you get to the ratio:
R/H=r/h=1/4 ??
Can you please elaborate?
thanks!!



kartik,

similar triangle property...

R/H = r/h

since 2R=H

r/h = 1/2

so h = 6.
_________________

Maadhu

MGMAT1 - 540 ( Trying to improve )

Manager
Manager
avatar
Status: Student
Joined: 26 Aug 2013
Posts: 197
Location: France
Concentration: Finance, General Management
Schools: EMLYON FT'16
GMAT 1: 650 Q47 V32
GPA: 3.44
Re: A right circular cone, twice as tall as it is wide at its  [#permalink]

Show Tags

New post 15 Nov 2013, 16:02
Hi,

have a small question: it is stated that "The cone is partially filled with water, which is dripping out of a tiny hole in the cone's tip at a rate of 2 cubic centimeters per hour"

It has been said that : the leak rate 2 cubic centimeters per hour --> 36pi/2. Meaning that it will take 18pi hours to fill the cone.

But, the cone could be half full. or 3/4 full. We don't know!

Therefore, the result will be different since they ask : "how much longer would it take for the cone to empty, assuming that no water is added to the cone and that there is no loss of water from the cone by any other means"

It could be 18pi/2 or 18pi/4!

Where did i miss something? Plz explain!

Thanks!
_________________

Think outside the box

Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 49968
Re: A right circular cone, twice as tall as it is wide at its  [#permalink]

Show Tags

New post 16 Nov 2013, 10:44
Paris75 wrote:
Hi,

have a small question: it is stated that "The cone is partially filled with water, which is dripping out of a tiny hole in the cone's tip at a rate of 2 cubic centimeters per hour"

It has been said that : the leak rate 2 cubic centimeters per hour --> 36pi/2. Meaning that it will take 18pi hours to fill the cone.

But, the cone could be half full. or 3/4 full. We don't know!

Therefore, the result will be different since they ask : "how much longer would it take for the cone to empty, assuming that no water is added to the cone and that there is no loss of water from the cone by any other means"

It could be 18pi/2 or 18pi/4!

Where did i miss something? Plz explain!

Thanks!


\(36\pi\) is the volume of water in the cone not the total volume of the cone.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Manager
Manager
avatar
Joined: 26 Sep 2013
Posts: 197
Concentration: Finance, Economics
GMAT 1: 670 Q39 V41
GMAT 2: 730 Q49 V41
Re: Leak of water from the cone  [#permalink]

Show Tags

New post 02 Dec 2013, 13:04
Bunuel wrote:
jax91 wrote:
(1) The top surface of the water in the cone is currently 9pi square centimeters in area. -- sufficient on its own (we can get D)
(2) The top surface of the water in the cone currently is exactly 4 centimeters below the cone's top, measuring vertically. -- sufficient on its own ( we have H)

As the ratio of diameter:hieght of any sub-cone formed in this cone will be 1:2

So we need either D or H to get the volume.

IMO D.


Disagree.

A right circular cone, twice as tall as it is wide at its greatest width, is pointing straight down. The cone is partially filled with water, which is dripping out of a tiny hole in the cone's tip at a rate of 2 cubic centimeters per hour. If the water were to continue to drip out at this rate, how much longer would it take for the cone to empty, assuming that no water is added to the cone and that there is no loss of water from the cone by any other means?
Attachment:
Untitled.png
H - height of cone, R radius of cone.
h - height of water in cone, r radius of top surface of water in cone.

(1) The top surface of the water in the cone is currently \(9\pi\) square centimeters in area. Top surface area of water = \(9\pi=\pi*r^2\) --> \(r=3\) --> \(\frac{R}{H}=\frac{r}{h}=\frac{1}{4}\) --> \(h=12\) --> \(V=\frac{1}{3}*\pi*r^2*h=36*\pi\) cubic centimeters.

Leak rate 2 cubic centimeters per hour --> \(time=\frac{36\pi}{2}\) hours.

Sufficient.

(2) The top surface of the water in the cone currently is exactly 4 centimeters below the cone's top, measuring vertically. Not sufficient we know that H=h+4, but h can be any value and thus the Volume can be any.

Answer: A.




The top surface of the water in the cone is currently \(9\pi\) square centimeters in area. Top surface area of water = \(9\pi=\pi*r^2\) --> \(r=3\) --> \(\frac{R}{H}=\frac{r}{h}=\frac{1}{4}\)

after you solved for r=3, how did you get

\(\frac{R}{H}=\frac{r}{h}=\frac{1}{4}\)

Aren't R, H, and h, all unknown?
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 49968
Re: Leak of water from the cone  [#permalink]

Show Tags

New post 03 Dec 2013, 01:39
AccipiterQ wrote:
Bunuel wrote:
jax91 wrote:
(1) The top surface of the water in the cone is currently 9pi square centimeters in area. -- sufficient on its own (we can get D)
(2) The top surface of the water in the cone currently is exactly 4 centimeters below the cone's top, measuring vertically. -- sufficient on its own ( we have H)

As the ratio of diameter:hieght of any sub-cone formed in this cone will be 1:2

So we need either D or H to get the volume.

IMO D.


Disagree.

A right circular cone, twice as tall as it is wide at its greatest width, is pointing straight down. The cone is partially filled with water, which is dripping out of a tiny hole in the cone's tip at a rate of 2 cubic centimeters per hour. If the water were to continue to drip out at this rate, how much longer would it take for the cone to empty, assuming that no water is added to the cone and that there is no loss of water from the cone by any other means?
Attachment:
Untitled.png
H - height of cone, R radius of cone.
h - height of water in cone, r radius of top surface of water in cone.

(1) The top surface of the water in the cone is currently \(9\pi\) square centimeters in area. Top surface area of water = \(9\pi=\pi*r^2\) --> \(r=3\) --> \(\frac{R}{H}=\frac{r}{h}=\frac{1}{4}\) --> \(h=12\) --> \(V=\frac{1}{3}*\pi*r^2*h=36*\pi\) cubic centimeters.

Leak rate 2 cubic centimeters per hour --> \(time=\frac{36\pi}{2}\) hours.

Sufficient.

(2) The top surface of the water in the cone currently is exactly 4 centimeters below the cone's top, measuring vertically. Not sufficient we know that H=h+4, but h can be any value and thus the Volume can be any.

Answer: A.




The top surface of the water in the cone is currently \(9\pi\) square centimeters in area. Top surface area of water = \(9\pi=\pi*r^2\) --> \(r=3\) --> \(\frac{R}{H}=\frac{r}{h}=\frac{1}{4}\)

after you solved for r=3, how did you get

\(\frac{R}{H}=\frac{r}{h}=\frac{1}{4}\)

Aren't R, H, and h, all unknown?


We are given that the cone, twice as tall as it is wide, which means that H = 2D --> H = 4R --> R/H = 1/4. Because of similar triangles, the same applies to r and h.

Hope it's clear.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Intern
Intern
avatar
Joined: 02 Dec 2013
Posts: 7
Re: A right circular cone, twice as tall as it is wide at its  [#permalink]

Show Tags

New post 07 Dec 2013, 00:51
maaadhu wrote:
kartik222 wrote:
hi Bunuel,
how did you get to the ratio:
R/H=r/h=1/4 ??
Can you please elaborate?
thanks!!



kartik,

similar triangle property...

R/H = r/h

since 2R=H

r/h = 1/2

so h = 6.


I really find these problems very tough. Is there any reference to these problems ???
Senior Manager
Senior Manager
User avatar
S
Status: love the club...
Joined: 24 Mar 2015
Posts: 267
A right circular cone, twice as tall as it is wide at its  [#permalink]

Show Tags

New post 10 Jul 2018, 06:07
maaadhu wrote:
kartik222 wrote:
hi Bunuel,
how did you get to the ratio:
R/H=r/h=1/4 ??
Can you please elaborate?
thanks!!



kartik,

similar triangle property...

R/H = r/h

since 2R=H

r/h = 1/2

so h = 6.


hi

how can you deduce that 2R = H

the cone is twice as tall as it is wide at its greatest width, so

H = 2 x 2R = 4R, which implies

R / 4R = r / h = 1/4, and since, r = 3, h= 12

Isn't that ?

thanks
GMAT Club Bot
A right circular cone, twice as tall as it is wide at its &nbs [#permalink] 10 Jul 2018, 06:07
Display posts from previous: Sort by

A right circular cone, twice as tall as it is wide at its

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.