Last visit was: 20 Nov 2025, 07:17 It is currently 20 Nov 2025, 07:17
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
andrewng
Joined: 29 Sep 2009
Last visit: 07 Oct 2009
Posts: 16
Own Kudos:
96
 [61]
Given Kudos: 3
Posts: 16
Kudos: 96
 [61]
6
Kudos
Add Kudos
55
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 20 Nov 2025
Posts: 105,420
Own Kudos:
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,420
Kudos: 778,520
 [24]
13
Kudos
Add Kudos
11
Bookmarks
Bookmark this Post
General Discussion
User avatar
jax91
Joined: 02 Jan 2009
Last visit: 19 Jun 2011
Posts: 50
Own Kudos:
158
 [1]
Given Kudos: 6
Location: India
Concentration: General
Schools:LBS
Posts: 50
Kudos: 158
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
avatar
svikram
Joined: 27 Jun 2011
Last visit: 18 Sep 2011
Posts: 1
Own Kudos:
1
 [1]
Posts: 1
Kudos: 1
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
It cant be A cause the question says, e cone is partially filled with water.

A can be true only when the cone is fully filled.
User avatar
testprepDublin
Joined: 29 Jun 2011
Last visit: 05 Sep 2012
Posts: 8
Own Kudos:
17
 [2]
Location: Ireland
Concentration: (trading as) Test Prep Dublin
Posts: 8
Kudos: 17
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
svikram
It cant be A cause the question says, e cone is partially filled with water.

A can be true only when the cone is fully filled.

If we know the ratio for height:width for any volume in a cone, then that ratio applies to all volumes. This rule is due to the fact that the angles in the cone stay constant when the volume changes. Statement 1 gives us the area at the top of the water. This allows us to find the water volume, using the height:width ratio provided, and subsequently the rate of leaking. A is the answer.
User avatar
kartik222
Joined: 27 Dec 2011
Last visit: 30 Aug 2025
Posts: 48
Own Kudos:
Given Kudos: 12
Posts: 48
Kudos: 28
Kudos
Add Kudos
Bookmarks
Bookmark this Post
hi Bunuel,
how did you get to the ratio:
R/H=r/h=1/4 ??
Can you please elaborate?
thanks!!
User avatar
maaadhu
Joined: 04 Apr 2013
Last visit: 16 Sep 2014
Posts: 96
Own Kudos:
Given Kudos: 36
Posts: 96
Kudos: 191
Kudos
Add Kudos
Bookmarks
Bookmark this Post
kartik222
hi Bunuel,
how did you get to the ratio:
R/H=r/h=1/4 ??
Can you please elaborate?
thanks!!


kartik,

similar triangle property...

R/H = r/h

since 2R=H

r/h = 1/2

so h = 6.
User avatar
Paris75
Joined: 26 Aug 2013
Last visit: 22 Jul 2024
Posts: 128
Own Kudos:
Given Kudos: 401
Status:Student
Location: France
Concentration: Finance, General Management
Schools: EMLYON FT'16
GMAT 1: 650 Q47 V32
GPA: 3.44
Schools: EMLYON FT'16
GMAT 1: 650 Q47 V32
Posts: 128
Kudos: 136
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hi,

have a small question: it is stated that "The cone is partially filled with water, which is dripping out of a tiny hole in the cone's tip at a rate of 2 cubic centimeters per hour"

It has been said that : the leak rate 2 cubic centimeters per hour --> 36pi/2. Meaning that it will take 18pi hours to fill the cone.

But, the cone could be half full. or 3/4 full. We don't know!

Therefore, the result will be different since they ask : "how much longer would it take for the cone to empty, assuming that no water is added to the cone and that there is no loss of water from the cone by any other means"

It could be 18pi/2 or 18pi/4!

Where did i miss something? Plz explain!

Thanks!
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 20 Nov 2025
Posts: 105,420
Own Kudos:
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,420
Kudos: 778,520
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Paris75
Hi,

have a small question: it is stated that "The cone is partially filled with water, which is dripping out of a tiny hole in the cone's tip at a rate of 2 cubic centimeters per hour"

It has been said that : the leak rate 2 cubic centimeters per hour --> 36pi/2. Meaning that it will take 18pi hours to fill the cone.

But, the cone could be half full. or 3/4 full. We don't know!

Therefore, the result will be different since they ask : "how much longer would it take for the cone to empty, assuming that no water is added to the cone and that there is no loss of water from the cone by any other means"

It could be 18pi/2 or 18pi/4!

Where did i miss something? Plz explain!

Thanks!

\(36\pi\) is the volume of water in the cone not the total volume of the cone.
User avatar
AccipiterQ
Joined: 26 Sep 2013
Last visit: 03 Sep 2020
Posts: 146
Own Kudos:
Given Kudos: 40
Concentration: Finance, Economics
GMAT 1: 670 Q39 V41
GMAT 2: 730 Q49 V41
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
jax91
(1) The top surface of the water in the cone is currently 9pi square centimeters in area. -- sufficient on its own (we can get D)
(2) The top surface of the water in the cone currently is exactly 4 centimeters below the cone's top, measuring vertically. -- sufficient on its own ( we have H)

As the ratio of diameter:hieght of any sub-cone formed in this cone will be 1:2

So we need either D or H to get the volume.

IMO D.

Disagree.

A right circular cone, twice as tall as it is wide at its greatest width, is pointing straight down. The cone is partially filled with water, which is dripping out of a tiny hole in the cone's tip at a rate of 2 cubic centimeters per hour. If the water were to continue to drip out at this rate, how much longer would it take for the cone to empty, assuming that no water is added to the cone and that there is no loss of water from the cone by any other means?
Attachment:
Untitled.png
H - height of cone, R radius of cone.
h - height of water in cone, r radius of top surface of water in cone.

(1) The top surface of the water in the cone is currently \(9\pi\) square centimeters in area. Top surface area of water = \(9\pi=\pi*r^2\) --> \(r=3\) --> \(\frac{R}{H}=\frac{r}{h}=\frac{1}{4}\) --> \(h=12\) --> \(V=\frac{1}{3}*\pi*r^2*h=36*\pi\) cubic centimeters.

Leak rate 2 cubic centimeters per hour --> \(time=\frac{36\pi}{2}\) hours.

Sufficient.

(2) The top surface of the water in the cone currently is exactly 4 centimeters below the cone's top, measuring vertically. Not sufficient we know that H=h+4, but h can be any value and thus the Volume can be any.

Answer: A.



The top surface of the water in the cone is currently \(9\pi\) square centimeters in area. Top surface area of water = \(9\pi=\pi*r^2\) --> \(r=3\) --> \(\frac{R}{H}=\frac{r}{h}=\frac{1}{4}\)

after you solved for r=3, how did you get

\(\frac{R}{H}=\frac{r}{h}=\frac{1}{4}\)

Aren't R, H, and h, all unknown?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 20 Nov 2025
Posts: 105,420
Own Kudos:
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,420
Kudos: 778,520
Kudos
Add Kudos
Bookmarks
Bookmark this Post
AccipiterQ
Bunuel
jax91
(1) The top surface of the water in the cone is currently 9pi square centimeters in area. -- sufficient on its own (we can get D)
(2) The top surface of the water in the cone currently is exactly 4 centimeters below the cone's top, measuring vertically. -- sufficient on its own ( we have H)

As the ratio of diameter:hieght of any sub-cone formed in this cone will be 1:2

So we need either D or H to get the volume.

IMO D.

Disagree.

A right circular cone, twice as tall as it is wide at its greatest width, is pointing straight down. The cone is partially filled with water, which is dripping out of a tiny hole in the cone's tip at a rate of 2 cubic centimeters per hour. If the water were to continue to drip out at this rate, how much longer would it take for the cone to empty, assuming that no water is added to the cone and that there is no loss of water from the cone by any other means?
Attachment:
Untitled.png
H - height of cone, R radius of cone.
h - height of water in cone, r radius of top surface of water in cone.

(1) The top surface of the water in the cone is currently \(9\pi\) square centimeters in area. Top surface area of water = \(9\pi=\pi*r^2\) --> \(r=3\) --> \(\frac{R}{H}=\frac{r}{h}=\frac{1}{4}\) --> \(h=12\) --> \(V=\frac{1}{3}*\pi*r^2*h=36*\pi\) cubic centimeters.

Leak rate 2 cubic centimeters per hour --> \(time=\frac{36\pi}{2}\) hours.

Sufficient.

(2) The top surface of the water in the cone currently is exactly 4 centimeters below the cone's top, measuring vertically. Not sufficient we know that H=h+4, but h can be any value and thus the Volume can be any.

Answer: A.



The top surface of the water in the cone is currently \(9\pi\) square centimeters in area. Top surface area of water = \(9\pi=\pi*r^2\) --> \(r=3\) --> \(\frac{R}{H}=\frac{r}{h}=\frac{1}{4}\)

after you solved for r=3, how did you get

\(\frac{R}{H}=\frac{r}{h}=\frac{1}{4}\)

Aren't R, H, and h, all unknown?

We are given that the cone, twice as tall as it is wide, which means that H = 2D --> H = 4R --> R/H = 1/4. Because of similar triangles, the same applies to r and h.

Hope it's clear.
User avatar
erictwendell
Joined: 02 Dec 2013
Last visit: 07 Dec 2013
Posts: 7
Posts: 7
Kudos: 0
Kudos
Add Kudos
Bookmarks
Bookmark this Post
maaadhu
kartik222
hi Bunuel,
how did you get to the ratio:
R/H=r/h=1/4 ??
Can you please elaborate?
thanks!!


kartik,

similar triangle property...

R/H = r/h

since 2R=H

r/h = 1/2

so h = 6.

I really find these problems very tough. Is there any reference to these problems ???
User avatar
testcracker
Joined: 24 Mar 2015
Last visit: 02 Dec 2024
Posts: 202
Own Kudos:
Given Kudos: 541
Status:love the club...
Posts: 202
Kudos: 130
Kudos
Add Kudos
Bookmarks
Bookmark this Post
maaadhu
kartik222
hi Bunuel,
how did you get to the ratio:
R/H=r/h=1/4 ??
Can you please elaborate?
thanks!!


kartik,

similar triangle property...

R/H = r/h

since 2R=H

r/h = 1/2

so h = 6.

hi

how can you deduce that 2R = H

the cone is twice as tall as it is wide at its greatest width, so

H = 2 x 2R = 4R, which implies

R / 4R = r / h = 1/4, and since, r = 3, h= 12

Isn't that ?

thanks
User avatar
DarkHorse2019
Joined: 29 Dec 2018
Last visit: 07 May 2020
Posts: 89
Own Kudos:
Given Kudos: 10
Location: India
WE:Marketing (Real Estate)
Posts: 89
Kudos: 272
Kudos
Add Kudos
Bookmarks
Bookmark this Post
erictwendell
maaadhu
kartik222
hi Bunuel,
how did you get to the ratio:
R/H=r/h=1/4 ??
Can you please elaborate?
thanks!!


kartik,

similar triangle property...

R/H = r/h

since 2R=H

r/h = 1/2

so h = 6.

I really find these problems very tough. Is there any reference to these problems ???

I recommend you to study the basics of 3D Geometries chapter

You can find the link of this from the GMAT Club Math book by bb & Bunuel here https://gmatclub.com/forum/math-3-d-geo ... ml#p792331
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 38,600
Own Kudos:
Posts: 38,600
Kudos: 1,079
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Moderators:
Math Expert
105420 posts
496 posts