Bunuel
The infinite sequence A is such that \(a_1=3\) and \(a_{n} = a_{n-1} + 3*10^{n-1}\), for all n > 1. If each term in the product \(x_1*x_2*x_3*...*x_k\) is taken from the infinite sequence A, repetitions allowed, and the product equals 173,446,418,443,770,747, which of the following could be equal to k?
A. 16
B. 17
C. 18
D. 19
E. 20
a1 = 3
a2 = 3 + 3*10 = 33
a3 = 33 + 3*100 = 333. and so on
Thus, the n-th term = 3333.... (n times)
We have: x(1) * x(2) * ... * x(k) = 173446418443770747; where all of x(1), x(2) etc. are from the above series of a1, a2, etc.
It is important to note the units' digit of the product - that is 7
Since all the terms in a1, a2 ... have units' digit 3, we basically need to check how many 3s are need to be multiplied to have the units' digit 7
We know that the units' digit cycle for powers of 3 is:
3^1 => 3
3^2 => 9
3^3 => 7
3^4 => 1
Thus, whenever 3 is multiplied 3 times or 3+4=7 times or 3+4+4=11 times etc, the units' digit will be 7
From the options, only 19 is possible since 19 = 3 + 4*4 i.e., the cycle of 3 was completed 4 times and then 3 more times.
Alternatively, we check the remainder when 19 is divided by 4 - it is 3. So, 3^19 => 3^3 => 7 (units' digit)
Answer D