Author 
Message 
TAGS:

Hide Tags

Manager
Joined: 18 Jun 2010
Posts: 234
Schools: Chicago Booth Class of 2013

As part of a game, four people each must secretly choose an
[#permalink]
Show Tags
06 Aug 2010, 22:40
Question Stats:
60% (03:41) correct 40% (00:58) wrong based on 16 sessions
HideShow timer Statistics
As part of a game, four people each must secretly choose an integer between 1 and 4, inclusive.
What is the approximate likelihood that 2 people will choose same number? What is the approximate likelihood that 3 people will choose same number?




Math Expert
Joined: 02 Sep 2009
Posts: 62619

Re: Probability  simple question.
[#permalink]
Show Tags
07 Aug 2010, 01:15
Financier wrote: As part of a game, four people each must secretly choose an integer between 1 and 4, inclusive. What is the approximate likelihood that 2 people will choose same number? What is the approximate likelihood that 3 people will choose same number? Yes, this is a veeery simple question, but I want to understand in how many ways this question can be cracked. The more ways we know  the greater our confidence is When four people choose an integer between 1 and 4, inclusive 5 cases are possible: A. All choose different numbers  {a,b,c,d}; B. Exactly 2 people choose same number and other 2 choose different numbers  {a,a,b,c}; C. 2 people choose same number and other 2 also choose same number  {a,a,b,b}; D. 3 people choose same number  {a,a,a,b}; E. All choose same number  {a,a,a,a}. Some notes before solving: As only these 5 cases are possible then the sum of their individual probabilities must be 1: \(P(A)+P(B)+P(C)+P(D)+P(E)=1\) \(Probability=\frac{# \ of \ favorable \ outcomes}{total \ # \ of \ outcomes}\) As each person has 4 options, integers from 1 to 4, inclusive, thus denominator, total # of outcomes would be 4^4 for all cases. A. All choose different numbers  {a,b,c,d}:\(P(A)=\frac{4!}{4^4}=\frac{24}{256}\). # of ways to "assign" four different objects (numbers 1, 2, 3, and 4) to 4 persons is 4!. B. Exactly 2 people choose same number and other 2 choose different numbers  {a,a,b,c}:\(P(B)=\frac{C^2_4*4*P^2_3}{4^4}=\frac{144}{256}\). \(C^2_4\)  # of ways to choose which 2 persons will have the same number; \(4\)  # of ways to choose which number it will be; \(P^2_3\)  # of ways to choose 2 different numbers out of 3 left for 2 other persons when order matters; C. 2 people choose same number and other 2 also choose same number  {a,a,b,b}:\(P(C)=\frac{{C^2_4*\frac{4!}{2!2!}}}{4^4}=\frac{36}{256}\). \(C^2_4\)  # of ways to choose which 2 numbers out of 4 will be used in {a,a,b,b}; \(\frac{4!}{2!2!}\)  # of ways to "assign" 4 objects out of which 2 a's and 2 b's are identical to 4 persons; D. 3 people choose same number  {a,a,a,b}:\(P(D)=\frac{C^3_4*4*3}{4^4}=\frac{48}{256}\). \(C^3_4\)  # of ways to choose which 3 persons out of 4 will have same number; \(4\)  # of ways to choose which number it will be; \(3\)  options for 4th person. E. All choose same number  {a,a,a,a}:\(P(E)=\frac{4}{4^4}=\frac{4}{256}\). \(4\)  options for the number which will be the same. Checking: \(P(A)+P(B)+P(C)+P(D)+P(E)=\frac{24}{256}+\frac{144}{256}+\frac{36}{256}+\frac{48}{256}+\frac{4}{256}=1\). Hope it's clear.
_________________




Intern
Joined: 03 Sep 2010
Posts: 15

Re: Probability  simple question.
[#permalink]
Show Tags
03 Sep 2010, 14:49
In case 2 why does the order matter ...could you plz give a brief on that one



Math Expert
Joined: 02 Sep 2009
Posts: 62619

Re: Probability  simple question.
[#permalink]
Show Tags
03 Sep 2010, 15:04
utkarshlavania wrote: In case 2 why does the order matter ...could you plz give a brief on that one B. Exactly 2 people choose same number and other 2 choose different numbers  {a,a,b,c}:\(P(B)=\frac{C^2_4*4*P^2_3}{4^4}=\frac{144}{256}\). \(C^2_4\)  # of ways to choose which 2 persons will have the same number; \(4\)  # of ways to choose which number it will be; \(P^2_3\)  # of ways to choose 2 different numbers out of 3 left for 2 other persons when order matters; Suppose the number which is repeated and chosen by 2 people is 4. Now, 2 other people must choose 2 different numbers out of 1, 2, and 3. XY 12 21 13 31 23 32 You can see that X choose 1 and Y choose 2 is different from Y choose 1 and X choose 2 (different scenario). That's why the order of the chosen numbers matters. Hope it's clear.
_________________



Director
Status: Apply  Last Chance
Affiliations: IIT, Purdue, PhD, TauBetaPi
Joined: 17 Jul 2010
Posts: 572
Schools: Wharton, Sloan, Chicago, Haas
WE 1: 8 years in Oil&Gas

Re: Probability  simple question.
[#permalink]
Show Tags
03 Sep 2010, 19:27
Bunuel for the 2 case i.e., 2 people selecting the same number: I wanted to work the probability through the "selection" way  meaning taking the prob of of each and multiplying through, can you point doublecheck that this is correct too (the logic) 
So I can select 2 of the 4 in 4C2 ways. Now one of these 2 can select any of the 4 numbers and the second one has to select the same number, the probability of that happening is 4/4 * 1/4 The remaining 2 people can select any of the 3 numbers 3/4 x 3/4, so the total prob is 4C2 3/(4^3)  this is what you get too, I see the numbers match, but I wanted to make sure of the logic..
But for the case when each selects a different number, if I apply the same kind of logic Combinations of 4 people 4x3x2x1, for each combination the probability of selecting 4 different numbers = first person can choose 4/4 second can choose 1/3 third can choose 1/2 Multiplying them all 4!/(2 3 4) =1 , that does not make sense... I understand your answer, can you please tell me where I am wrong?



Intern
Joined: 03 Sep 2010
Posts: 15

Re: Probability  simple question.
[#permalink]
Show Tags
04 Sep 2010, 10:29
thanks once again bunuel



Manager
Joined: 16 Mar 2010
Posts: 120

Re: Probability  simple question.
[#permalink]
Show Tags
04 Sep 2010, 22:27
Thanks for the question as well as for the answer



Manager
Joined: 07 Feb 2010
Posts: 111

Re: Probability  simple question.
[#permalink]
Show Tags
12 Oct 2010, 06:08
c) [a,a,b,b]
4C2 4 3C2 3/256
4C2 is no of ways of selecting 2 persons who have same number 4 is the no of ways in which no it will be 3C2 is the no of ways of selcting 2 persons who have same number 3 is the no of ways in which no it will be
can some one explain whats wrong with this? thanks in advance



Math Expert
Joined: 02 Sep 2009
Posts: 62619

Re: Probability  simple question.
[#permalink]
Show Tags
12 Oct 2010, 07:57
anilnandyala wrote: c) [a,a,b,b]
4C2 4 3C2 3/256
4C2 is no of ways of selecting 2 persons who have same number 4 is the no of ways in which no it will be 3C2 is the no of ways of selcting 2 persons who have same number 3 is the no of ways in which no it will be
can some one explain whats wrong with this? thanks in advance If you doing this way then after first selection of 2 persons there are only 2 more left not 3, so 2C2 not 3C2. Also you should divide this by 2! to get rid of duplications, so you would have 4C2*4*2C2*3/2=36.
_________________



Intern
Affiliations: IEEE
Joined: 27 Jul 2010
Posts: 14
Location: Playa Del Rey,CA
WE 1: 2.5 yrs  Medicaid
WE 2: 2 yrs  Higher Ed

Re: Probability  simple question.
[#permalink]
Show Tags
31 May 2011, 22:58
mainhoon wrote: Bunuel for the 2 case i.e., 2 people selecting the same number: I wanted to work the probability through the "selection" way  meaning taking the prob of of each and multiplying through, can you point doublecheck that this is correct too (the logic) 
But for the case when each selects a different number, if I apply the same kind of logic Combinations of 4 people 4x3x2x1, for each combination the probability of selecting 4 different numbers = first person can choose 4/4 second can choose 1/3 third can choose 1/2 Multiplying them all 4!/(2 3 4) =1 , that does not make sense... I understand your answer, can you please tell me where I am wrong? For the case(a,b,c,d)= 1st chooses 4/4 2nd chooses 3/4 3rd chooses 2/4 4th chooses 1/4 So we have 4/4*3/4*2/4*1/4=4!/4^4 Similarly for (a,a,b,c) = 4C2*4/4*1/4*3/4*2/4 For (a,a,b,b) = 4C2*4/4*1/4*3/4*1/4*1/2! For(a,a,a,b) = 4C3*4/4*1/4*1/4*3/4 For (a,a,a,a)= 4/4*1/4*1/4*1/4



Manager
Joined: 03 Aug 2011
Posts: 203
Location: United States
Concentration: General Management, Entrepreneurship
GPA: 3.38
WE: Engineering (Computer Software)

Re: Probability  simple question.
[#permalink]
Show Tags
29 Aug 2011, 20:27
someonear wrote: mainhoon wrote: Bunuel for the 2 case i.e., 2 people selecting the same number: I wanted to work the probability through the "selection" way  meaning taking the prob of of each and multiplying through, can you point doublecheck that this is correct too (the logic) 
But for the case when each selects a different number, if I apply the same kind of logic Combinations of 4 people 4x3x2x1, for each combination the probability of selecting 4 different numbers = first person can choose 4/4 second can choose 1/3 third can choose 1/2 Multiplying them all 4!/(2 3 4) =1 , that does not make sense... I understand your answer, can you please tell me where I am wrong? For the case(a,b,c,d)= 1st chooses 4/4 2nd chooses 3/4 3rd chooses 2/4 4th chooses 1/4 So we have 4/4*3/4*2/4*1/4=4!/4^4 Similarly for (a,a,b,c) = 4C2*4/4*1/4*3/4*2/4 For (a,a,b,b) = 4C2*4/4*1/4*3/4*1/4*1/2! For(a,a,a,b) = 4C3*4/4*1/4*1/4*3/4 For (a,a,a,a)= 4/4*1/4*1/4*1/4 where did you get the 4c2 in the AABC case? i had the following in place of the 4c2 which gives the wrong answer, I can't for the life of me figure out why it's 4c2 then you can rearrange everything since the order in this case matters, since the order represents different people [(4/4) * (1/4) * (3/4) * (2/4)] * (4! / 2!) where 4! allows me to rearrange everything and 2! removes the duplicates for person 1 and 2. am i doing something wrong?



Intern
Affiliations: IEEE
Joined: 27 Jul 2010
Posts: 14
Location: Playa Del Rey,CA
WE 1: 2.5 yrs  Medicaid
WE 2: 2 yrs  Higher Ed

Re: Probability  simple question.
[#permalink]
Show Tags
30 Aug 2011, 07:20
pinchharmonic wrote: someonear wrote: mainhoon wrote: Bunuel for the 2 case i.e., 2 people selecting the same number: I wanted to work the probability through the "selection" way  meaning taking the prob of of each and multiplying through, can you point doublecheck that this is correct too (the logic) 
But for the case when each selects a different number, if I apply the same kind of logic Combinations of 4 people 4x3x2x1, for each combination the probability of selecting 4 different numbers = first person can choose 4/4 second can choose 1/3 third can choose 1/2 Multiplying them all 4!/(2 3 4) =1 , that does not make sense... I understand your answer, can you please tell me where I am wrong? For the case(a,b,c,d)= 1st chooses 4/4 2nd chooses 3/4 3rd chooses 2/4 4th chooses 1/4 So we have 4/4*3/4*2/4*1/4=4!/4^4 Similarly for (a,a,b,c) = 4C2*4/4*1/4*3/4*2/4 For (a,a,b,b) = 4C2*4/4*1/4*3/4*1/4*1/2! For(a,a,a,b) = 4C3*4/4*1/4*1/4*3/4 For (a,a,a,a)= 4/4*1/4*1/4*1/4 where did you get the 4c2 in the AABC case? i had the following in place of the 4c2 which gives the wrong answer, I can't for the life of me figure out why it's 4c2 then you can rearrange everything since the order in this case matters, since the order represents different people [(4/4) * (1/4) * (3/4) * (2/4)] * (4! / 2!) where 4! allows me to rearrange everything and 2! removes the duplicates for person 1 and 2. am i doing something wrong? Think of AABC has a word with repeating alphabets A. So AABC can be arranged in 4!/2! ways Now as ordering is important here we have 4!/2! * (4/4*1/4*3/4*2/4)*1/2 as final answer where we can say 4!/2! * 1/2 is nothing but 4C2 Hope this helps



Manager
Joined: 03 Aug 2011
Posts: 203
Location: United States
Concentration: General Management, Entrepreneurship
GPA: 3.38
WE: Engineering (Computer Software)

Re: Probability  simple question.
[#permalink]
Show Tags
30 Aug 2011, 12:21
Quote: Think of AABC has a word with repeating alphabets A. So AABC can be arranged in 4!/2! ways Now as ordering is important here we have 4!/2! * (4/4*1/4*3/4*2/4)*1/2 as final answer where we can say 4!/2! * 1/2 is nothing but 4C2 Hope this helps thanks, but i'm on point with everythign you said, but where is the 1/2 from? I also rearranged the 4 letters using (4!/2!), but I can't figure out why you have the 1/2 at the end.



Manager
Joined: 03 Aug 2011
Posts: 203
Location: United States
Concentration: General Management, Entrepreneurship
GPA: 3.38
WE: Engineering (Computer Software)

Re: Probability  simple question.
[#permalink]
Show Tags
31 Aug 2011, 14:00
pinchharmonic wrote: Quote: Think of AABC has a word with repeating alphabets A. So AABC can be arranged in 4!/2! ways Now as ordering is important here we have 4!/2! * (4/4*1/4*3/4*2/4)*1/2 as final answer where we can say 4!/2! * 1/2 is nothing but 4C2 Hope this helps thanks, but i'm on point with everythign you said, but where is the 1/2 from? I also rearranged the 4 letters using (4!/2!), but I can't figure out why you have the 1/2 at the end. bumping for an explanation of one of these approaches, thanks!



Manager
Joined: 14 Nov 2011
Posts: 114
Location: United States
Concentration: General Management, Entrepreneurship
GPA: 3.61
WE: Consulting (Manufacturing)

Re: Probability  simple question.
[#permalink]
Show Tags
26 May 2013, 22:37
Bunuel wrote: anilnandyala wrote: c) [a,a,b,b]
4C2 4 3C2 3/256
4C2 is no of ways of selecting 2 persons who have same number 4 is the no of ways in which no it will be 3C2 is the no of ways of selcting 2 persons who have same number 3 is the no of ways in which no it will be
can some one explain whats wrong with this? thanks in advance If you doing this way then after first selection of 2 persons there are only 2 more left not 3, so 2C2 not 3C2. Also you should divide this by 2! to get rid of duplications, so you would have 4C2*4*2C2*3/2=36. Hi Bunnel, Here why do we have to divide by 2? I didn't get this part. No. of cases for 2 pairs choosing two different nos. = 4c2(no. of 2's pairs)*4c1(no. which the first pair can choose)*3c1(no which second pair can choose) = 72 I am not making arrangements here these are only combinations, why is there repetition here?



Math Expert
Joined: 02 Sep 2009
Posts: 62619

Re: Probability  simple question.
[#permalink]
Show Tags
26 May 2013, 23:23
cumulonimbus wrote: Bunuel wrote: anilnandyala wrote: c) [a,a,b,b]
4C2 4 3C2 3/256
4C2 is no of ways of selecting 2 persons who have same number 4 is the no of ways in which no it will be 3C2 is the no of ways of selcting 2 persons who have same number 3 is the no of ways in which no it will be
can some one explain whats wrong with this? thanks in advance If you doing this way then after first selection of 2 persons there are only 2 more left not 3, so 2C2 not 3C2. Also you should divide this by 2! to get rid of duplications, so you would have 4C2*4*2C2*3/2=36. Hi Bunnel, Here why do we have to divide by 2? I didn't get this part. No. of cases for 2 pairs choosing two different nos. = 4c2(no. of 2's pairs)*4c1(no. which the first pair can choose)*3c1(no which second pair can choose) = 72 I am not making arrangements here these are only combinations, why is there repetition here? Suppose you choose numbers 1 and 2. Now, in how many ways can you assign 1, 1, 2, 2, to W, X, Y, Z? In 12 ways or in 6? The correct answer is 6: 4!/(2!2!)=6. Listing the cases might help: W  X  Y  Z1  1  2  2 2  2  1  1 1  2  1  2 1  2  2  1 2  1  1  2 2  1  2  1
_________________



Manager
Joined: 14 Nov 2011
Posts: 114
Location: United States
Concentration: General Management, Entrepreneurship
GPA: 3.61
WE: Consulting (Manufacturing)

Re: Probability  simple question.
[#permalink]
Show Tags
27 May 2013, 19:38
Hi Bunnel,
Here why do we have to divide by 2? I didn't get this part.
No. of cases for 2 pairs choosing two different nos. = 4c2(no. of 2's pairs)*4c1(no. which the first pair can choose)*3c1(no which second pair can choose) = 72
I am not making arrangements here these are only combinations, why is there repetition here?[/quote]
Suppose you choose numbers 1 and 2. Now, in how many ways can you assign 1, 1, 2, 2, to W, X, Y, Z? In 12 ways or in 6?
The correct answer is 6: 4!/(2!2!)=6. Listing the cases might help: W  X  Y  Z 1  1  2  2 2  2  1  1 1  2  1  2 1  2  2  1 2  1  1  2 2  1  2  1[/quote]
Hi Bunnel,
I listed out the possible teams, as you said their are only 3 ways to make 6 pairs. wx yz wy xz wz xy
That is all, only 3 ways to make 6 distinct pairs. Looks like 4c2 giving me total no of pairs and we are picking 2 pairs at a time to assign 2 number out of 4 to give 12 ways to pick numbers.
But this is tricky, unless I list the cases this might not be very apparent.
Thanks for the extra questions.



Math Expert
Joined: 02 Sep 2009
Posts: 62619

Re: Probability  simple question.
[#permalink]
Show Tags
28 May 2013, 00:00
cumulonimbus wrote: Hi Bunnel,
I listed out the possible teams, as you said their are only 3 ways to make 6 pairs. wx yz wy xz wz xy
That is all, only 3 ways to make 6 distinct pairs. Looks like 4c2 giving me total no of pairs and we are picking 2 pairs at a time to assign 2 number out of 4 to give 12 ways to pick numbers.
But this is tricky, unless I list the cases this might not be very apparent.
Thanks for the extra questions. Not sure I understand correctly what you mean there, anyway: \(C^2_4=6\) in my solution for C here: aspartofagamefourpeopleeachmustsecretlychoosean98684.html#p760687 refers to the number # of ways to choose which 2 numbers out of 4 will be used in {a,a,b,b}. NOT to the number of ways we can choose 2 people out of 4. Does this make sense?
_________________



Intern
Joined: 22 May 2013
Posts: 43
Concentration: General Management, Technology
GPA: 3.9
WE: Information Technology (Computer Software)

Re: Probability  simple question.
[#permalink]
Show Tags
17 May 2014, 06:55
pinchharmonic wrote: pinchharmonic wrote: Quote: Think of AABC has a word with repeating alphabets A. So AABC can be arranged in 4!/2! ways Now as ordering is important here we have 4!/2! * (4/4*1/4*3/4*2/4)*1/2 as final answer where we can say 4!/2! * 1/2 is nothing but 4C2 Hope this helps thanks, but i'm on point with everythign you said, but where is the 1/2 from? I also rearranged the 4 letters using (4!/2!), but I can't figure out why you have the 1/2 at the end. bumping for an explanation of one of these approaches, thanks! Hi Bunuel, Regarding case b. (aabc) This seems to have never been answered. And i am very much under the same dilemma. even after doing a 4!/2! where is this additional factor of 1/2 coming from? you can rearrange everything since the order in this case matters, since the order represents different people [(4/4) * (1/4) * (3/4) * (2/4)] * (4! / 2!) where 4! allows me to rearrange everything and 2! removes the duplicates for person 1 and 2. Also if there is a factor then why 2? since we have aabc over here, which is three different no's out of four. Please please help me understand. Also, in case c. (aabb) I am calculating probability in the following fashion : 4/4 * 1/4 * 3/4 * 1/4 * 4!/(2!*2!) divided by 4^4 which is equal to 72/4^4 again i seem to be missing a factor of 2 and i cannot at all understand what i am doing wrong here as i am even removing duplicates introduced by duplicate a and b. i am able to get the correct answer for all the other scenarios using my approach (aaab, abcd,aaaa) except for the two posted above(aabc,aabb) which is baffling me even to a greater degree. it would be really great if you could help me out here. Cheers, Kriti



Intern
Joined: 22 May 2013
Posts: 43
Concentration: General Management, Technology
GPA: 3.9
WE: Information Technology (Computer Software)

Re: Probability  simple question.
[#permalink]
Show Tags
17 May 2014, 20:09
Bunuel wrote: cumulonimbus wrote: Hi Bunnel,
I listed out the possible teams, as you said their are only 3 ways to make 6 pairs. wx yz wy xz wz xy
That is all, only 3 ways to make 6 distinct pairs. Looks like 4c2 giving me total no of pairs and we are picking 2 pairs at a time to assign 2 number out of 4 to give 12 ways to pick numbers.
But this is tricky, unless I list the cases this might not be very apparent.
Thanks for the extra questions. Not sure I understand correctly what you mean there, anyway: \(C^2_4=6\) in my solution for C here: aspartofagamefourpeopleeachmustsecretlychoosean98684.html#p760687 refers to the number # of ways to choose which 2 numbers out of 4 will be used in {a,a,b,b}. NOT to the number of ways we can choose 2 people out of 4. Does this make sense? Hi Bunuel, Could you please help me with the question i have posted above?




Re: Probability  simple question.
[#permalink]
17 May 2014, 20:09



Go to page
1 2
Next
[ 28 posts ]



