GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 15 Dec 2018, 16:14

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel
Events & Promotions in December
PrevNext
SuMoTuWeThFrSa
2526272829301
2345678
9101112131415
16171819202122
23242526272829
303112345
Open Detailed Calendar
  • $450 Tuition Credit & Official CAT Packs FREE

     December 15, 2018

     December 15, 2018

     10:00 PM PST

     11:00 PM PST

    Get the complete Official GMAT Exam Pack collection worth $100 with the 3 Month Pack ($299)
  • FREE Quant Workshop by e-GMAT!

     December 16, 2018

     December 16, 2018

     07:00 AM PST

     09:00 AM PST

    Get personalized insights on how to achieve your Target Quant Score.

At a certain high school, there are three sports: baseball,

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Magoosh GMAT Instructor
User avatar
G
Joined: 28 Dec 2011
Posts: 4489
At a certain high school, there are three sports: baseball,  [#permalink]

Show Tags

New post 10 Sep 2013, 14:39
3
9
00:00
A
B
C
D
E

Difficulty:

  95% (hard)

Question Stats:

50% (02:08) correct 50% (01:53) wrong based on 255 sessions

HideShow timer Statistics

At a certain high school, there are three sports: baseball, basketball, and football. Some athletes at this school play two of these three, but no athlete plays in all three. At this school, the ratio of (all baseball players) to (all basketball players) to (all football players) is 15:12:8. How many athletes at this school play baseball?

Statement (1): 40 athletes play both baseball and football, and 75 play football only and no other sport

Statement (2): 60 athletes play only baseball and no other sport


For a discussion of ratios & proportions on the GMAT, further practice problems, and a solution of this problem, see:
http://magoosh.com/gmat/2013/gmat-quant ... oportions/

Mike :-)

_________________

Mike McGarry
Magoosh Test Prep


Education is not the filling of a pail, but the lighting of a fire. — William Butler Yeats (1865 – 1939)

Intern
Intern
avatar
Joined: 31 Jan 2013
Posts: 17
Schools: ISB '15
WE: Consulting (Energy and Utilities)
Re: At a certain high school, there are three sports: baseball,  [#permalink]

Show Tags

New post 10 Sep 2013, 20:57
2
2
Given, ratio of Base B: Basket B: Foot B = 15:12:8 and non of them play all three games.

Each form of game will have players who plays only that game and two games.

((Only Base B)+(Base B+Basket B)+(Base B+Foot B)) : ((Only Basket B)+(Basket B+Base B)+(Basket B+Foot B)) : ((Only Foot B)+(Foot B+Base B)+(Foot B+Basket B)) = 15:12:8


1) ((Only Base B)+(Base B+Basket B)+ 40 ) : ( 75 + 40 +(Foot B+Basket B)) = 15:8
from the provided information, we can't deduct the total number of base ball players. Hence, insufficient.(Options A and D can be eliminated)

2) from the provided information, we can't deduct the total number of base ball players. Hence, insufficient. (Option B can be eliminated)


Both 1 & 2 : (60 +(Base B+Basket B)+ 40 ) : ( 75 + 40 +(Foot B+Basket B)) = 15:8
From the provided information, we still can't deduct the total number of base ball players. Hence, insufficient. (Option C also can be eliminated)

Hence the answer is

/SW
GMATH Teacher
User avatar
G
Status: GMATH founder
Joined: 12 Oct 2010
Posts: 544
At a certain high school, there are three sports: baseball,  [#permalink]

Show Tags

New post 31 Oct 2018, 13:47
1
Quote:
At a certain high school, there are three sports: baseball, basketball, and football. Some athletes at this school play two of these three, but no athlete plays in all three. At this school, the ratio of (all baseball players) to (all basketball players) to (all football players) is 15:12:18. How many athletes at this school play baseball?

Statement (1): 40 athletes play both baseball and football, and 75 play football only and no other sport

Statement (2): 60 athletes play only baseball and no other sport

Obs.: my solution is for the "15:12:18" version, slightly different that the original (first) post presented in this topic. Obviously the reasoning is identical.

Nice example of the Venn diagrams ("overlapping sets") and the k technique together!

\(15:12:18 = 5:4:6\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,\left\{ \matrix{
\,{\rm{Baseball}} = 5k \hfill \cr
\,{\rm{Basketball}} = 4k \hfill \cr
\,{\rm{Football}} = 6k \hfill \cr} \right.\,\,\,\,\,\,\,\left( {k > 0} \right)\)

\(? = 5k\,\)


We go straight to (1+2): a BIFURCATION will guarantee that the correct answer is (E).


Image


This solution follows the notations and rationale taught in the GMATH method.

Regards,
Fabio.
_________________

Fabio Skilnik :: https://GMATH.net (Math for the GMAT) or GMATH.com.br (Portuguese version)
Course release PROMO : finish our test drive till 30/Dec with (at least) 50 correct answers out of 92 (12-questions Mock included) to gain a 50% discount!

GMAT Club Bot
At a certain high school, there are three sports: baseball, &nbs [#permalink] 31 Oct 2018, 13:47
Display posts from previous: Sort by

At a certain high school, there are three sports: baseball,

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.