Last visit was: 19 Nov 2025, 15:27 It is currently 19 Nov 2025, 15:27
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
Balvinder
Joined: 20 Mar 2005
Last visit: 30 Aug 2010
Posts: 117
Own Kudos:
468
 [156]
Posts: 117
Kudos: 468
 [156]
9
Kudos
Add Kudos
147
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,364
 [73]
27
Kudos
Add Kudos
46
Bookmarks
Bookmark this Post
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,364
 [20]
9
Kudos
Add Kudos
11
Bookmarks
Bookmark this Post
General Discussion
User avatar
jbs
Joined: 25 Jul 2007
Last visit: 09 Jan 2010
Posts: 58
Own Kudos:
34
 [2]
Posts: 58
Kudos: 34
 [2]
1
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
The first team can be selected in 8c2 ways, the second in 6c2, the third in 4c2 and the fourth in 2c2 ways.

Multiplying the no. of ways, we have
(8!)/16 = 2520 ways.

The answer is B.
User avatar
johnrb
Joined: 01 Oct 2007
Last visit: 28 Feb 2008
Posts: 35
Own Kudos:
45
 [7]
Posts: 35
Kudos: 45
 [7]
4
Kudos
Add Kudos
3
Bookmarks
Bookmark this Post
Balvinder
A group of 8 friends want to play doubles tennis. How many different ways can the group be divided into 4 teams of 2 people?

A. 420
B. 2520
C. 168
D. 90
E. 105


There's another topic asking this very question down below. Here's my answer:

E) 105.

Start with the question, how many ways can you divide a group of 4 into 2 teams. The answer is 3. Suppose our group is A B C D. Then the possible teams are:

AB CD
AC BD
AD BC

(It's 4C2/2, because determining one of the teams automatically determines the other one.)

Now consider the case of a group of 6 divided into 3 teams. Our group: A B C D E F. A has to be on some team, and there are 5 possibilities: AB, AC, AD, AE, or AF. For each of these possibilities, the rest of the members form a group of 4 divided into 2 teams. So the overall result is

5*(4C2/2) = 15.

Now we're up to our case. Group = A B C D E F G H. Again, A must be on a team--there are 7 possibilities. For each of those possibilities, there are 15 ways of dividing the remaining 6 members into 3 teams. So total possibilities = 7 * 15 = 105.
User avatar
jeeteshsingh
Joined: 22 Dec 2009
Last visit: 03 Aug 2023
Posts: 177
Own Kudos:
1,001
 [1]
Given Kudos: 48
Posts: 177
Kudos: 1,001
 [1]
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
Balvinder
A group of 8 friends want to play doubles tennis. How many different ways can the group be divided into 4 teams of 2 people?

A. 420
B. 2520
C. 168
D. 90
E. 105

8c2 x 6c2 x 4c2 = 2520 = B
User avatar
jeeteshsingh
Joined: 22 Dec 2009
Last visit: 03 Aug 2023
Posts: 177
Own Kudos:
1,001
 [1]
Given Kudos: 48
Posts: 177
Kudos: 1,001
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
jeeteshsingh
Balvinder
A group of 8 friends want to play doubles tennis. How many different ways can the group be divided into 4 teams of 2 people?

A. 420
B. 2520
C. 168
D. 90
E. 105

8c2 x 6c2 x 4c2 = 2520 = B

We should divide this by 4! --> 2520/4!= 105, as the order of the teams does not matter.

You can think about this in another way.
For the first person we can pick a pair in 7 ways;
For the second one in 5 ways (as two are already chosen);
For the third one in 3 ways (as 4 people are already chosen);
For the fourth one there is only one left.

So we have 7*5*3*1=105

You can heck this: combination-groups-and-that-stuff-85707.html#p642634

There is also direct formula for this:

1. The number of ways in which \(mn\) different items can be divided equally into \(m\) groups, each containing \(n\) objects and the order of the groups is not important is \(\frac{(mn)!}{(n!)^m*m!}\).

2. The number of ways in which \(mn\) different items can be divided equally into \(m\) groups, each containing \(n\) objects and the order of the groups is important is \(\frac{(mn)!}{(n!)^m}\)

Bunuel... I guess I have started to feel lost when it comes to Combinations and Permutations. I thought since I have used Combination, I don't consider the order.. but as we per you even 8c2 x 6c2 x 4c2 has considered the order in it... THis confuses me... Could you please help me with this? :( :oops: :cry:

For me I thought.. if I had used 8p2 x 6p2 x 4p2.... I would have considered the order too.... is that not the case?
User avatar
honeyrai
Joined: 01 Feb 2010
Last visit: 26 Feb 2010
Posts: 22
Own Kudos:
Given Kudos: 12
Posts: 22
Kudos: 52
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel

It's not about the order of the players IN the group, with C you you excluded the duplications of these kind: {AB} and {BA} are excluded by C.

It's about the order of the groups themselves. Set of teams: {AB}{CD}{EF}{GH} is the same set as: {E,F}, {C,D}, {A,B}, {G,H} and by your formula we'll get these two identical sets of teams.

Basically one particular set of teams, let's say again: {AB}{CD}{EF}{GH}, will be chosen by your formula 24 times (4!=24) and we "need" only one from these 24, hence we should divide 8c2 x 6c2 x 4c2 by 4! to get rid of these duplications.

Hope it's clear.
You chose 4! because of 4 sets? right. If we had 5 teams we would have chosen 5! irrespective of the fact that from how many people its being chosen from?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
778,364
 [5]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,364
 [5]
2
Kudos
Add Kudos
3
Bookmarks
Bookmark this Post
honeyrai
Bunuel

It's not about the order of the players IN the group, with C you you excluded the duplications of these kind: {AB} and {BA} are excluded by C.

It's about the order of the groups themselves. Set of teams: {AB}{CD}{EF}{GH} is the same set as: {E,F}, {C,D}, {A,B}, {G,H} and by your formula we'll get these two identical sets of teams.

Basically one particular set of teams, let's say again: {AB}{CD}{EF}{GH}, will be chosen by your formula 24 times (4!=24) and we "need" only one from these 24, hence we should divide 8c2 x 6c2 x 4c2 by 4! to get rid of these duplications.

Hope it's clear.
You chose 4! because of 4 sets? right. If we had 5 teams we would have chosen 5! irrespective of the fact that from how many people its being chosen from?

Yes we are dividing by the factorial of the number of teams. You can also check following problems to practice:

probability-88685.html#p669025
sub-committee-86346.html#p647698
probability-85993.html#p644656
combination-groups-and-that-stuff-85707.html#p642634

Hope it helps.
User avatar
honeyrai
Joined: 01 Feb 2010
Last visit: 26 Feb 2010
Posts: 22
Own Kudos:
Given Kudos: 12
Posts: 22
Kudos: 52
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
honeyrai
Bunuel

It's not about the order of the players IN the group, with C you you excluded the duplications of these kind: {AB} and {BA} are excluded by C.

It's about the order of the groups themselves. Set of teams: {AB}{CD}{EF}{GH} is the same set as: {E,F}, {C,D}, {A,B}, {G,H} and by your formula we'll get these two identical sets of teams.

Basically one particular set of teams, let's say again: {AB}{CD}{EF}{GH}, will be chosen by your formula 24 times (4!=24) and we "need" only one from these 24, hence we should divide 8c2 x 6c2 x 4c2 by 4! to get rid of these duplications.

Hope it's clear.
You chose 4! because of 4 sets? right. If we had 5 teams we would have chosen 5! irrespective of the fact that from how many people its being chosen from?

Yes we are dividing by the factorial of the number of teams. You can also check following problems to practice:

probability-88685.html#p669025
sub-committee-86346.html#p647698
probability-85993.html#p644656
combination-groups-and-that-stuff-85707.html#p642634

Hope it helps.
Thanks for these superb posts! The next difficult part is how to judge whether the order is important or not? Can you shed some light?

In the first post on your list of suggested posts, why is order important for 9 dogs to be divided into 3 groups of 3 members each?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
778,364
 [2]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,364
 [2]
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
honeyrai
Thanks for these superb posts! The next difficult part is how to judge whether the order is important or not? Can you shed some light?

In the first post on your list of suggested posts, why is order important for 9 dogs to be divided into 3 groups of 3 members each?

The order of the groups matter in case we have team #1, #2, etc. Or in other words when we have specific assignment for each team.

Consider the following: we have one set of three teams: A, B & C and three tasks: 1, 2, & 3. In how many ways can we assign these teams to these tasks? The answer would be 3!=6:

1-2-3
A-B-C
A-C-B
B-A-C
B-C-A
C-A-B
C-B-A

Ian Stewart explains this very well at: combination-groups-and-that-stuff-85707.html#p642634

Hope it helps.
avatar
AkritiMehta
Joined: 21 Jun 2010
Last visit: 23 Dec 2010
Posts: 3
Own Kudos:
Given Kudos: 3
Posts: 3
Kudos: 1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hi how do we get the answer for the Ist question as 105. Pls explain
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,364
 [14]
3
Kudos
Add Kudos
11
Bookmarks
Bookmark this Post
AkritiMehta
Hi how do we get the answer for the Ist question as 105. Pls explain

A group of 8 friends want to play doubles tennis. How many different ways can the group be divided into 4 teams of 2 people?

A. 420
B. 2520
C. 168
D. 90
E. 105

\(\frac{C^2_8*C^2_6*C^2_4*C^2_2}{4!}=105\), we are dividing by 4! (factorial of the # of teams) as the order of the teams does not matter. If 8 people are - 1, 2, 3, 4, 5, 6, 7, 8, then (1,2)(3,4)(5,6)(7,8) would be the same 4 teams as (5,6)(7,8)(1,2)(3,4), as we don't have team #1, team #2...

You can think about this in another way.
For the first person we can pick a pair in 7 ways;
For the second one in 5 ways (as two are already chosen);
For the third one in 3 ways (as 4 people are already chosen);
For the fourth one there is only one left.

So we have 7*5*3*1=105

You can check similar problems:
https://gmatclub.com/forum/probability-8 ... %20equally
https://gmatclub.com/forum/probability-8 ... ide+groups
https://gmatclub.com/forum/combination-5 ... ml#p690842
https://gmatclub.com/forum/sub-committee ... ide+groups


There is also direct formula for this:

1. The number of ways in which \(mn\) different items can be divided equally into \(m\) groups, each containing \(n\) objects and the order of the groups is not important is \(\frac{(mn)!}{(n!)^m*m!}\).

2. The number of ways in which \(mn\) different items can be divided equally into \(m\) groups, each containing \(n\) objects and the order of the groups is important is \(\frac{(mn)!}{(n!)^m}\)

Hope it helps.
User avatar
sudhir18n
User avatar
Current Student
Joined: 26 May 2005
Last visit: 13 Feb 2013
Posts: 352
Own Kudos:
604
 [4]
Given Kudos: 13
Posts: 352
Kudos: 604
 [4]
2
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
Alchemist1320
A group of 8 friends want to play doubles tennis. How many different ways can the group be divided into 4 teams of 2 people?

A. 420
B. 2520
C. 168
D. 90
E. 105

Formula = The number of ways in which MN different items can be divided equally into M groups, each containing N objects and the order of the groups is not important important is (mn)!/n^m*m!

so its 8!/(2^4*4!) = 105 = E
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 19 Nov 2025
Posts: 16,267
Own Kudos:
77,000
 [5]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 77,000
 [5]
4
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
Alchemist1320
A group of 8 friends want to play doubles tennis. How many different ways can the group be divided into 4 teams of 2 people?

A. 420
B. 2520
C. 168
D. 90
E. 105

From the question, we can say that the teams are not distinct i.e. we don't have team A, team B etc. But let's solve this question by making first team, second team, third team and fourth team. Later we will adjust the answer.
Out of 8 people, how can you make the first team? In 8C2 ways.
Out of 6 people, how can you make the second team? In 6C2 ways.
Out of 4 people, how can you make the third team? In 4C2 ways.
Out of 2 people, how can you make the fourth team? In 2C2 ways.
How can you make the 4 teams?
8C2 *6C2*4C2*2C2

But here, we have considered the 4 teams to be distinct. We called them 'first team', 'second team' etc.
So we need to divide the result by 4! to 'un-arrange' them.

You get: 8C2 *6C2*4C2*2C2/4! = 8*7*6*5*4*3*2*1/16*4! = 105
User avatar
shankar245
Joined: 13 Jun 2011
Last visit: 19 Jun 2015
Posts: 60
Own Kudos:
Given Kudos: 19
Status:Do till 740 :)
Concentration: Strategy, General Management
GMAT 1: 460 Q35 V20
GPA: 3.6
WE:Consulting (Computer Software)
GMAT 1: 460 Q35 V20
Posts: 60
Kudos: 31
Kudos
Add Kudos
Bookmarks
Bookmark this Post
karishma,

Quote:
But here, we have considered the 4 teams to be distinct. We called them 'first team', 'second team' etc.
So we need to divide the result by 4! to 'un-arrange' them.


Can you please explain this?
I understand that we divide the slots! to remove identical stuff but here how does it make sense?
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 19 Nov 2025
Posts: 16,267
Own Kudos:
77,000
 [3]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 77,000
 [3]
3
Kudos
Add Kudos
Bookmarks
Bookmark this Post
shankar245

Can you please explain this?
I understand that we divide the slots! to remove identical stuff but here how does it make sense?

This is the logic behind this step:

Say there are 4 boys: A, B, C, D
There are two ways of splitting them in two groups.

Method I

The two groups can be made in the following ways
1. AB and CD
2. AC and BD
3. AD and BC

The groups are not named/distinct. You have 4 boys in front of you and you split them in 2 groups and do not name the groups. There are 3 total ways of doing this.

Method II
On the other hand, I could put them in two distinct groups in the following ways
1. Group1: AB, Group2: CD
2. Group1: CD, Group2: AB (If you notice, this is the same as above, just that now AB is group 2)
3. Group1: AC, Group2: BD
4. Group1: BD, Group2: AC
5. Group1: AD, Group2: BC
6. Group1: BC, Group2: AD

Here I have to put them in two different groups, group 1 and group 2. AB and CD is not just one way of splitting them. AB could be assigned to group 1 or group 2 so there are 2 cases. In this case, every 'way' we get above will have two possibilities so total number of ways will be twice.
So there will be 6 total ways.

Here since the groups are not distinct but 8C2 * 6C2 * 4C2 * 2C2 makes them distinct (we say, select the FIRST group in 8C2 ways, SECOND group in 6C2 ways etc), we need to divide by 4!.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
778,364
 [1]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,364
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Enael
Bunuel
jeeteshsingh
A group of 8 friends want to play doubles tennis. How many different ways can the group be divided into 4 teams of 2 people?

A. 420
B. 2520
C. 168
D. 90
E. 105

We should divide this by 4! --> 2520/4!= 105, as the order of the teams does not matter.

You can think about this in another way.
For the first person we can pick a pair in 7 ways;
For the second one in 5 ways (as two are already chosen);
For the third one in 3 ways (as 4 people are already chosen);
For the fourth one there is only one left.

So we have 7*5*3*1=105

You can heck this: combination-groups-and-that-stuff-85707.html#p642634

There is also direct formula for this:

1. The number of ways in which \(mn\) different items can be divided equally into \(m\) groups, each containing \(n\) objects and the order of the groups is not important is \(\frac{(mn)!}{(n!)^m*m!}\).

2. The number of ways in which \(mn\) different items can be divided equally into \(m\) groups, each containing \(n\) objects and the order of the groups is important is \(\frac{(mn)!}{(n!)^m}\)


I tried using the formula and got:

m = 4 groups
n = 8 people

(4*8)!/(8!)^4*4! but the result was way off.

Am I using it wrongly?

Appreciate the help.

The number of ways in which \(mn\) different items can be divided equally into \(m\) groups, each containing \(n\) objects and the order of the groups is not important is \(\frac{(mn)!}{(n!)^m*m!}\).

How many different ways can the group be divided into 4 teams (m) of 2 people (n)?

\(\frac{(mn)!}{(n!)^m*m!}=\frac{8!}{(2!)^4*4!}=105\).

Hope it helps.
User avatar
adiagr
Joined: 18 Jan 2010
Last visit: 05 Oct 2019
Posts: 203
Own Kudos:
Given Kudos: 9
GMAT 1: 710 Q48 V40
Posts: 203
Kudos: 1,136
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
AkritiMehta
Hi how do we get the answer for the Ist question as 105. Pls explain

A group of 8 friends want to play doubles tennis. How many different ways can the group be divided into 4 teams of 2 people?

A. 420
B. 2520
C. 168
D. 90
E. 105

\(\frac{C^2_8*C^2_6*C^2_2}{4!}=105\), we are dividing by 4! (factorial of the # of teams) as the order of the teams does not matter. If 8 people are - 1, 2, 3, 4, 5, 6, 7, 8, then (1,2)(3,4)(5,6)(7,8) would be the same 4 teams as (5,6)(7,8)(1,2)(3,4), as we don't have team #1, team #2...

You can think about this in another way.
For the first person we can pick a pair in 7 ways;
For the second one in 5 ways (as two are already chosen);
For the third one in 3 ways (as 4 people are already chosen);
For the fourth one there is only one left.

So we have 7*5*3*1=105

You can check similar problems:
probability-88685.html?hilit=different%20items%20divided%20equally
probability-85993.html?highlight=divide+groups
combination-55369.html#p690842
sub-committee-86346.html?highlight=divide+groups


There is also direct formula for this:

1. The number of ways in which \(mn\) different items can be divided equally into \(m\) groups, each containing \(n\) objects and the order of the groups is not important is \(\frac{(mn)!}{(n!)^m*m!}\).

2. The number of ways in which \(mn\) different items can be divided equally into \(m\) groups, each containing \(n\) objects and the order of the groups is important is \(\frac{(mn)!}{(n!)^m}\)

Hope it helps.


I do not agree that we need to divide it by 4!

8C2 * 6C2*4C2 is a regular combination formula

We choose 2 persons out of 8. 1st team is formed. There is no arrangement, just selection. (8C2)

We then choose 2 persons out of remaining 6. 2nd team is formed. There is no arrangement, just selection. (6C2)

We then choose 2 persons out of remaining 4. 3rd team is formed. There is no arrangement, just selection. (4C2)

We then choose 2 persons out of remaining 2. 4th team is formed. There is no arrangement, just selection. (2C2)

Product: 8C2 * 6C2*4C2

This works out to 8! / (2!.2!.2!.2!) = 7!/2 = 2520
User avatar
chetan2u
User avatar
GMAT Expert
Joined: 02 Aug 2009
Last visit: 15 Nov 2025
Posts: 11,238
Own Kudos:
43,706
 [3]
Given Kudos: 335
Status:Math and DI Expert
Location: India
Concentration: Human Resources, General Management
GMAT Focus 1: 735 Q90 V89 DI81
Products:
Expert
Expert reply
GMAT Focus 1: 735 Q90 V89 DI81
Posts: 11,238
Kudos: 43,706
 [3]
1
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
adiagr
Bunuel
AkritiMehta
Hi how do we get the answer for the Ist question as 105. Pls explain

A group of 8 friends want to play doubles tennis. How many different ways can the group be divided into 4 teams of 2 people?

A. 420
B. 2520
C. 168
D. 90
E. 105

\(\frac{C^2_8*C^2_6*C^2_2}{4!}=105\), we are dividing by 4! (factorial of the # of teams) as the order of the teams does not matter. If 8 people are - 1, 2, 3, 4, 5, 6, 7, 8, then (1,2)(3,4)(5,6)(7,8) would be the same 4 teams as (5,6)(7,8)(1,2)(3,4), as we don't have team #1, team #2...

You can think about this in another way.
For the first person we can pick a pair in 7 ways;
For the second one in 5 ways (as two are already chosen);
For the third one in 3 ways (as 4 people are already chosen);
For the fourth one there is only one left.

So we have 7*5*3*1=105

You can check similar problems:
probability-88685.html?hilit=different%20items%20divided%20equally
probability-85993.html?highlight=divide+groups
combination-55369.html#p690842
sub-committee-86346.html?highlight=divide+groups


There is also direct formula for this:

1. The number of ways in which \(mn\) different items can be divided equally into \(m\) groups, each containing \(n\) objects and the order of the groups is not important is \(\frac{(mn)!}{(n!)^m*m!}\).

2. The number of ways in which \(mn\) different items can be divided equally into \(m\) groups, each containing \(n\) objects and the order of the groups is important is \(\frac{(mn)!}{(n!)^m}\)

Hope it helps.


I do not agree that we need to divide it by 4!

8C2 * 6C2*4C2 is a regular combination formula

We choose 2 persons out of 8. 1st team is formed. There is no arrangement, just selection. (8C2)

We then choose 2 persons out of remaining 6. 2nd team is formed. There is no arrangement, just selection. (6C2)

We then choose 2 persons out of remaining 4. 3rd team is formed. There is no arrangement, just selection. (4C2)

We then choose 2 persons out of remaining 2. 4th team is formed. There is no arrangement, just selection. (2C2)

Product: 8C2 * 6C2*4C2

This works out to 8! / (2!.2!.2!.2!) = 7!/2 = 2520

Hi,
the solution requires that the answer be divided by 4!...
reason is to eliminate the repetitions that arise out of the standard formula...
Explanation of the same in a simpler scenario..

say 4 people, ABCD in 2 groups...
standard formula \(= 4C2*2C2 = 6*1 = 6\)....
write these cases-
1) AB and CD
2) AC and BD
3) AD and BC

so only three ! where are other three?
say in 4c2 we chose BC , so AD in second group..
so BC and AD... BUT this is SAME as 3 above - AD and BC..
so when we choose AD, we are automatically choosing the other group BC..
so our answer \(= \frac{6}{2!}= 3\)

Hope it helps you
 1   2   
Moderators:
Math Expert
105390 posts
Tuck School Moderator
805 posts