Last visit was: 20 Nov 2025, 00:12 It is currently 20 Nov 2025, 00:12
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
kevincan
User avatar
GMAT Instructor
Joined: 04 Jul 2006
Last visit: 18 Apr 2022
Posts: 958
Own Kudos:
Given Kudos: 6
Location: Madrid
Posts: 958
Kudos: 729
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
game over
Joined: 04 Jul 2006
Last visit: 31 Oct 2006
Posts: 38
Own Kudos:
Posts: 38
Kudos: 5
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
MA
Joined: 25 Nov 2004
Last visit: 09 Aug 2011
Posts: 697
Own Kudos:
Posts: 697
Kudos: 515
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
ps_dahiya
Joined: 20 Nov 2005
Last visit: 15 Oct 2019
Posts: 1,486
Own Kudos:
Concentration: Strategy, Entrepreneurship
Schools:Completed at SAID BUSINESS SCHOOL, OXFORD - Class of 2008
Posts: 1,486
Kudos: 1,215
Kudos
Add Kudos
Bookmarks
Bookmark this Post
kevincan
Does |x(x-2)(x+4)|= x^3+2x^2-8x ?

(1) |x+2| < |x+1|
(2) x > -3


B

|x(x-2)(x+4)|= x^3+2x^2-8x can be written as

|x(x-2)(x+4)|= x(x-2)(x+4)............EQ1

EQ1 one will be true if all three terms are +ve or exactly two terms are -ve.: i.e x >= -4
EQ1 one will be false if all three terms are -ve or exactly 1 term is -ve: i.e x <-4

St1: This statement says x < -2. Stem can be true (x = -3) or false (x = -5): INSUFF

St2: x > -3 : Stem is always true: SUFF
User avatar
apollo168
Joined: 14 Jul 2006
Last visit: 28 Nov 2006
Posts: 175
Own Kudos:
Posts: 175
Kudos: 13
Kudos
Add Kudos
Bookmarks
Bookmark this Post
kevincan
Does |x(x-2)(x+4)|= x^3+2x^2-8x ?

(1) |x+2| < |x+1|
(2) x > -3


Hi guys just saw this I think the answer is suppose to be C not B

From the question stem |x(x-2)(x+4)|= x^3+2x^2-8x
if x(x-2)(x+4)>0 so obtaining the critical points
x<-4 -4<x<0 and 0<x<2 x>2
If x<-4 |x(x-2)(x+4)|<0
If -4<x<0 |x(x-2)(x+4)|>0
If 0<x<2 |x(x-2)(x+4)|<0
If x>2 |x(x-2)(x+4)|>0

From 1 using the same strategy we can determine that x<-2 insuff the expression can either be positive or negative

From 2 x>-3 insufficient expression can be positive or negative
combine -3<x<-2 sufficient
User avatar
Futuristic
Joined: 28 Dec 2005
Last visit: 07 May 2009
Posts: 415
Own Kudos:
Posts: 415
Kudos: 52
Kudos
Add Kudos
Bookmarks
Bookmark this Post
I get C as well....

is |x(x-2)(x+4)| = x(x-2)(x+4)??

LHS is always +ve, so we need to find out if x(x-2)(x+4) is +ve...

From 1:


|x+2| < |x+1|

Squaring both sides, we get....

x^2+4x+4 < x^2+2x+1
=> 2x < -3
or x < -1.5

This makes 'x' -ve
This makes '-x-2' -ve
This may make 'x+4' +ve or -ve....INSUFF

From 2:

x > -3

This means the 3rd term (x+4) is always +ve

At x= -2: (-2)(-2-2) +ve
At x = -1: (-1)(-3) +ve
At x= 0 0 ok
At x = 1: 1(-1) -ve.....INSUFF


Taking 1 and 2 together....
-3 < x < -1.5

The value is always +ve....
User avatar
kevincan
User avatar
GMAT Instructor
Joined: 04 Jul 2006
Last visit: 18 Apr 2022
Posts: 958
Own Kudos:
Given Kudos: 6
Location: Madrid
Posts: 958
Kudos: 729
Kudos
Add Kudos
Bookmarks
Bookmark this Post
kevincan
Does |x(x-2)(x+4)|= x^3+2x^2-8x ?

(1) |x+2| < |x+1|
(2) x > -3


Note that Q=x(x-2)(x+4)=x^3+2x^2-8x.

So if Q>0, the inequality holds

(1) means that x<-1.5

x and x-2 are negative, but x+4, and thus Q, could be either positive or negative
NOT SUFF


(2) x>-3. x+4 is positive, but x and x-2 and thus Q could be either positive or negative. NOT SUFF

(1) and (2) -3<x<-1.5

x and x-2 are negative and x+4 is positive. Thus Q>0. SUFF
User avatar
tennis1ball
Joined: 25 Jun 2006
Last visit: 18 Mar 2008
Posts: 650
Own Kudos:
Posts: 650
Kudos: 996
Kudos
Add Kudos
Bookmarks
Bookmark this Post
I choose C.

1) means x < -1.5
2) means x > -3


both together will make that equation right.
User avatar
diegmat
Joined: 14 Sep 2006
Last visit: 16 Apr 2012
Posts: 152
Own Kudos:
Schools:Olin Business School - Washington University
Posts: 152
Kudos: 59
Kudos
Add Kudos
Bookmarks
Bookmark this Post
kevincan
Does |x(x-2)(x+4)|= x^3+2x^2-8x ?

(1) |x+2| -3


A.

1) |x+2| -3

x could be any number greater than -3. E.g. -2, 1. For 1, |x(x-2)(x+4)| Does not equal x^3+2x^2-8x...INSUFF



Archived Topic
Hi there,
This topic has been closed and archived due to inactivity or violation of community quality standards. No more replies are possible here.
Where to now? Join ongoing discussions on thousands of quality questions in our Data Sufficiency (DS) Forum
Still interested in this question? Check out the "Best Topics" block above for a better discussion on this exact question, as well as several more related questions.
Thank you for understanding, and happy exploring!
Moderators:
Math Expert
105408 posts
GMAT Tutor
1924 posts