Author 
Message 
TAGS:

Hide Tags

Manager
Joined: 17 Oct 2012
Posts: 68
Location: India
Concentration: Strategy, Finance
WE: Information Technology (Computer Software)

For a particular model of moving truck, rental agency A charges a dail [#permalink]
Show Tags
Updated on: 22 Oct 2014, 07:15
Question Stats:
39% (01:06) correct 61% (01:08) wrong based on 410 sessions
HideShow timer Statistics
For a particular model of moving truck, rental agency A charges a daily fee of m dollars, plus n cents per mile. For the same model of truck, rental agency B charges a daily fee of p dollars, plus q cents per mile. If a driver plans to rent this model of truck for two days, which of the following expressions gives the number of miles this driver must drive for the two rental agencies’ total charges to be equal? (A) \(\frac{100(mp)}{qn}\) (B) \(\frac{200(pm)}{nq}\) (C) \(\frac{50(mp)}{qn}\) (D) \(\frac{2(pm)}{nq}\) (E) \(\frac{mp}{2(qn)}\)
Official Answer and Stats are available only to registered users. Register/ Login.
Originally posted by chetan86 on 22 Oct 2014, 04:48.
Last edited by Bunuel on 22 Oct 2014, 07:15, edited 1 time in total.
Edited the question.



Math Expert
Joined: 02 Sep 2009
Posts: 46284

Re: For a particular model of moving truck, rental agency A charges a dail [#permalink]
Show Tags
22 Oct 2014, 07:24
chetan86 wrote: For a particular model of moving truck, rental agency A charges a daily fee of m dollars, plus n cents per mile. For the same model of truck, rental agency B charges a daily fee of p dollars, plus q cents per mile. If a driver plans to rent this model of truck for two days, which of the following expressions gives the number of miles this driver must drive for the two rental agencies’ total charges to be equal?
(A) \(\frac{100(mp)}{qn}\)
(B) \(\frac{200(pm)}{nq}\)
(C) \(\frac{50(mp)}{qn}\)
(D) \(\frac{2(pm)}{nq}\)
(E) \(\frac{mp}{2(qn)}\) Let x be the number of miles this driver must drive for the two rental agencies’ total charges to be equal. Agency A's charges for two days = 2m + n/100*x (n/100 gives dollars per mile). Agency B's charges for two days = 2p + q/100*x (q/100 gives dollars per mile). Equate and solve for x: \(2m + \frac{n}{100}*x=2p + \frac{q}{100}*x\); \(200m+nx=200p+qx\); \(x=\frac{200p200m}{nq}\). Answer: B. Hope it's clear. P.S. Please read Writing Mathematical Formulas on the Forum. Thank you.
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Manager
Joined: 12 Sep 2014
Posts: 162
Concentration: Strategy, Leadership
GPA: 3.94

Re: For a particular model of moving truck, rental agency A charges a dail [#permalink]
Show Tags
22 Oct 2014, 10:41
This is mostly like a plug and chug. Let the # of days =2 and the # of miles be equal for both drivers. Just remember to divide n and q by 100 to convert from cents to dollars.
You should get 2m+n*miles/100 = 2p + q*miles/100
Solving for miles gets you B.



Manager
Joined: 17 Oct 2012
Posts: 68
Location: India
Concentration: Strategy, Finance
WE: Information Technology (Computer Software)

Re: For a particular model of moving truck, rental agency A charges a dail [#permalink]
Show Tags
24 Oct 2014, 00:08
Bunuel wrote: chetan86 wrote: For a particular model of moving truck, rental agency A charges a daily fee of m dollars, plus n cents per mile. For the same model of truck, rental agency B charges a daily fee of p dollars, plus q cents per mile. If a driver plans to rent this model of truck for two days, which of the following expressions gives the number of miles this driver must drive for the two rental agencies’ total charges to be equal?
(A) \(\frac{100(mp)}{qn}\)
(B) \(\frac{200(pm)}{nq}\)
(C) \(\frac{50(mp)}{qn}\)
(D) \(\frac{2(pm)}{nq}\)
(E) \(\frac{mp}{2(qn)}\) Let x be the number of miles this driver must drive for the two rental agencies’ total charges to be equal. Agency A's charges for two days = 2m + n/100*x (n/100 gives dollars per mile). Agency B's charges for two days = 2p + q/100*x (q/100 gives dollars per mile). Equate and solve for x: \(2m + \frac{n}{100}*x=2p + \frac{q}{100}*x\); \(200m+nx=200p+qx\); \(x=\frac{200p200m}{nq}\). Answer: B. Hope it's clear. P.S. Please read Writing Mathematical Formulas on the Forum. Thank you. Hi Bunuel, Thanks a lot for your explanation. Next time I will take care to formulate mathematical expression correctly. Thanks for the link.



Intern
Joined: 10 Jul 2014
Posts: 41
Concentration: Technology, Strategy

Re: For a particular model of moving truck, rental agency A charges a dail [#permalink]
Show Tags
24 Oct 2014, 13:40
Bunuel wrote: chetan86 wrote: For a particular model of moving truck, rental agency A charges a daily fee of m dollars, plus n cents per mile. For the same model of truck, rental agency B charges a daily fee of p dollars, plus q cents per mile. If a driver plans to rent this model of truck for two days, which of the following expressions gives the number of miles this driver must drive for the two rental agencies’ total charges to be equal?
(A) \(\frac{100(mp)}{qn}\)
(B) \(\frac{200(pm)}{nq}\)
(C) \(\frac{50(mp)}{qn}\)
(D) \(\frac{2(pm)}{nq}\)
(E) \(\frac{mp}{2(qn)}\) Let x be the number of miles this driver must drive for the two rental agencies’ total charges to be equal. Agency A's charges for two days = 2m + n/100*x (n/100 gives dollars per mile). Agency B's charges for two days = 2p + q/100*x (q/100 gives dollars per mile). Equate and solve for x: \(2m + \frac{n}{100}*x=2p + \frac{q}{100}*x\); \(200m+nx=200p+qx\); \(x=\frac{200p200m}{nq}\). Answer: B. Hope it's clear. P.S. Please read Writing Mathematical Formulas on the Forum. Thank you. Agency A's charges for two days = 2m + n/100*x (n/100 gives dollars per mile). Hi Bunuel, Can you please clarify why we are not multiplying 2 days to cents? I was stuck on this question because I calculated as 2(m + n/100)



Math Expert
Joined: 02 Sep 2009
Posts: 46284

Re: For a particular model of moving truck, rental agency A charges a dail [#permalink]
Show Tags
25 Oct 2014, 06:11
pairakesh10 wrote: Bunuel wrote: chetan86 wrote: For a particular model of moving truck, rental agency A charges a daily fee of m dollars, plus n cents per mile. For the same model of truck, rental agency B charges a daily fee of p dollars, plus q cents per mile. If a driver plans to rent this model of truck for two days, which of the following expressions gives the number of miles this driver must drive for the two rental agencies’ total charges to be equal?
(A) \(\frac{100(mp)}{qn}\)
(B) \(\frac{200(pm)}{nq}\)
(C) \(\frac{50(mp)}{qn}\)
(D) \(\frac{2(pm)}{nq}\)
(E) \(\frac{mp}{2(qn)}\) Let x be the number of miles this driver must drive for the two rental agencies’ total charges to be equal. Agency A's charges for two days = 2m + n/100*x (n/100 gives dollars per mile). Agency B's charges for two days = 2p + q/100*x (q/100 gives dollars per mile). Equate and solve for x: \(2m + \frac{n}{100}*x=2p + \frac{q}{100}*x\); \(200m+nx=200p+qx\); \(x=\frac{200p200m}{nq}\). Answer: B. Hope it's clear. P.S. Please read Writing Mathematical Formulas on the Forum. Thank you. Agency A's charges for two days = 2m + n/100*x (n/100 gives dollars per mile). Hi Bunuel, Can you please clarify why we are not multiplying 2 days to cents? I was stuck on this question because I calculated as 2(m + n/100) Because x is already the total number of miles driven in two days.
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Current Student
Joined: 03 Jan 2014
Posts: 6
Concentration: Entrepreneurship, Technology

Re: For a particular model of moving truck, rental agency A charges a dail [#permalink]
Show Tags
18 Jul 2016, 02:00
Bunuel wrote: chetan86 wrote: For a particular model of moving truck, rental agency A charges a daily fee of m dollars, plus n cents per mile. For the same model of truck, rental agency B charges a daily fee of p dollars, plus q cents per mile. If a driver plans to rent this model of truck for two days, which of the following expressions gives the number of miles this driver must drive for the two rental agencies’ total charges to be equal?
(A) \(\frac{100(mp)}{qn}\)
(B) \(\frac{200(pm)}{nq}\)
(C) \(\frac{50(mp)}{qn}\)
(D) \(\frac{2(pm)}{nq}\)
(E) \(\frac{mp}{2(qn)}\) Let x be the number of miles this driver must drive for the two rental agencies’ total charges to be equal. Agency A's charges for two days = 2m + n/100* x (n/100 gives dollars per mile). Agency B's charges for two days = 2p + q/100* x (q/100 gives dollars per mile). Equate and solve for x: \(2m + \frac{n}{100}*x=2p + \frac{q}{100}*x\); \(200m+nx=200p+qx\); \(x=\frac{200p200m}{nq}\). Answer: B. Hope it's clear. P.S. Please read Writing Mathematical Formulas on the Forum. Thank you. Hi Bunuel, Could you please explain why you are taking the number of miles for both the agencies as equal. Couldn't it be possible that  Agency A's charges for two days = 2m + n/100* x (n/100 gives dollars per mile). Agency B's charges for two days = 2p + q/100* y (q/100 gives dollars per mile). And the total miles would be x+y. Thanks



Math Expert
Joined: 02 Sep 2009
Posts: 46284

Re: For a particular model of moving truck, rental agency A charges a dail [#permalink]
Show Tags
18 Jul 2016, 03:23
gmat730 wrote: Bunuel wrote: chetan86 wrote: For a particular model of moving truck, rental agency A charges a daily fee of m dollars, plus n cents per mile. For the same model of truck, rental agency B charges a daily fee of p dollars, plus q cents per mile. If a driver plans to rent this model of truck for two days, which of the following expressions gives the number of miles this driver must drive for the two rental agencies’ total charges to be equal?
(A) \(\frac{100(mp)}{qn}\)
(B) \(\frac{200(pm)}{nq}\)
(C) \(\frac{50(mp)}{qn}\)
(D) \(\frac{2(pm)}{nq}\)
(E) \(\frac{mp}{2(qn)}\) Let x be the number of miles this driver must drive for the two rental agencies’ total charges to be equal. Agency A's charges for two days = 2m + n/100* x (n/100 gives dollars per mile). Agency B's charges for two days = 2p + q/100* x (q/100 gives dollars per mile). Equate and solve for x: \(2m + \frac{n}{100}*x=2p + \frac{q}{100}*x\); \(200m+nx=200p+qx\); \(x=\frac{200p200m}{nq}\). Answer: B. Hope it's clear. P.S. Please read Writing Mathematical Formulas on the Forum. Thank you. Hi Bunuel, Could you please explain why you are taking the number of miles for both the agencies as equal. Couldn't it be possible that  Agency A's charges for two days = 2m + n/100* x (n/100 gives dollars per mile). Agency B's charges for two days = 2p + q/100* y (q/100 gives dollars per mile). And the total miles would be x+y. Thanks The question asks: which of the following expressions gives the number of miles (x in our case) this driver must drive for the two rental agencies’ total charges to be equal? So, for what x, are the charges of two agencies equal.
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Math Expert
Joined: 02 Sep 2009
Posts: 46284

Re: For a particular model of moving truck, rental agency A charges a dail [#permalink]
Show Tags
18 Jul 2016, 03:25
gmat730 wrote: Bunuel wrote: chetan86 wrote: For a particular model of moving truck, rental agency A charges a daily fee of m dollars, plus n cents per mile. For the same model of truck, rental agency B charges a daily fee of p dollars, plus q cents per mile. If a driver plans to rent this model of truck for two days, which of the following expressions gives the number of miles this driver must drive for the two rental agencies’ total charges to be equal?
(A) \(\frac{100(mp)}{qn}\)
(B) \(\frac{200(pm)}{nq}\)
(C) \(\frac{50(mp)}{qn}\)
(D) \(\frac{2(pm)}{nq}\)
(E) \(\frac{mp}{2(qn)}\) Let x be the number of miles this driver must drive for the two rental agencies’ total charges to be equal. Agency A's charges for two days = 2m + n/100* x (n/100 gives dollars per mile). Agency B's charges for two days = 2p + q/100* x (q/100 gives dollars per mile). Equate and solve for x: \(2m + \frac{n}{100}*x=2p + \frac{q}{100}*x\); \(200m+nx=200p+qx\); \(x=\frac{200p200m}{nq}\). Answer: B. Hope it's clear. P.S. Please read Writing Mathematical Formulas on the Forum. Thank you. Hi Bunuel, Could you please explain why you are taking the number of miles for both the agencies as equal. Couldn't it be possible that  Agency A's charges for two days = 2m + n/100* x (n/100 gives dollars per mile). Agency B's charges for two days = 2p + q/100* y (q/100 gives dollars per mile). And the total miles would be x+y. Thanks To understand better check similar questions: salespersonascompensationforanyweekis360plus30977.htmlhealthinsuranceplanarequirestheinsuredtopay1000or106447.htmlHope it helps.
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Current Student
Joined: 03 Jan 2014
Posts: 6
Concentration: Entrepreneurship, Technology

Re: For a particular model of moving truck, rental agency A charges a dail [#permalink]
Show Tags
18 Jul 2016, 03:46
Hi Bunuel, Could you please explain why you are taking the number of miles for both the agencies as equal. Couldn't it be possible that  Agency A's charges for two days = 2m + n/100* x (n/100 gives dollars per mile). Agency B's charges for two days = 2p + q/100* y (q/100 gives dollars per mile). And the total miles would be x+y. Thanks[/quote] To understand better check similar questions: salespersonascompensationforanyweekis360plus30977.htmlhealthinsuranceplanarequirestheinsuredtopay1000or106447.htmlHope it helps.[/quote] Got it. Thank you. I was thinking about another possibility in which the driver could travel x miles for agency A and y miles for agency B and still get the total charges as equal.



Target Test Prep Representative
Status: Founder & CEO
Affiliations: Target Test Prep
Joined: 14 Oct 2015
Posts: 2773
Location: United States (CA)

Re: For a particular model of moving truck, rental agency A charges a dail [#permalink]
Show Tags
21 Sep 2017, 14:48
chetan86 wrote: For a particular model of moving truck, rental agency A charges a daily fee of m dollars, plus n cents per mile. For the same model of truck, rental agency B charges a daily fee of p dollars, plus q cents per mile. If a driver plans to rent this model of truck for two days, which of the following expressions gives the number of miles this driver must drive for the two rental agencies’ total charges to be equal?
(A) \(\frac{100(mp)}{qn}\)
(B) \(\frac{200(pm)}{nq}\)
(C) \(\frac{50(mp)}{qn}\)
(D) \(\frac{2(pm)}{nq}\)
(E) \(\frac{mp}{2(qn)}\) We can create the following equation in which z = the number of miles driven. Since the daily fee is in dollars and the mileage fee is in cents, we convert the daily fee to cents. We should remember that m dollars = 100m cents and p dollars = 100p cents. 2(100m) + nz = 2(100p) + qz 200m + nz = 200p + qz nz  qz = 200p  200m z(n  q) = 200(p  m) z = 200(p  m)/(n  q) Answer: B
_________________
Scott WoodburyStewart
Founder and CEO
GMAT Quant SelfStudy Course
500+ lessons 3000+ practice problems 800+ HD solutions




Re: For a particular model of moving truck, rental agency A charges a dail
[#permalink]
21 Sep 2017, 14:48






