Last visit was: 19 Nov 2025, 06:14 It is currently 19 Nov 2025, 06:14
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
Silver89
Joined: 29 Jun 2011
Last visit: 29 Sep 2021
Posts: 140
Own Kudos:
301
 [48]
Given Kudos: 94
Status:Trying to survive
GMAt Status: Quant section
Concentration: Finance, Real Estate
Schools: WBS (D)
GMAT Date: 12-30-2011
GPA: 3.2
Schools: WBS (D)
Posts: 140
Kudos: 301
 [48]
1
Kudos
Add Kudos
47
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,388
Own Kudos:
778,221
 [6]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,388
Kudos: 778,221
 [6]
4
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,388
Own Kudos:
778,221
 [5]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,388
Kudos: 778,221
 [5]
2
Kudos
Add Kudos
3
Bookmarks
Bookmark this Post
General Discussion
User avatar
Silver89
Joined: 29 Jun 2011
Last visit: 29 Sep 2021
Posts: 140
Own Kudos:
301
 [4]
Given Kudos: 94
Status:Trying to survive
GMAt Status: Quant section
Concentration: Finance, Real Estate
Schools: WBS (D)
GMAT Date: 12-30-2011
GPA: 3.2
Schools: WBS (D)
Posts: 140
Kudos: 301
 [4]
1
Kudos
Add Kudos
3
Bookmarks
Bookmark this Post
Thanks,
In fact you can solve it in another way too which is
number of ways without restriction = 9*9*9 = 729
number of ways that break restriction = 9*1*9 = 9
so the answer is 729-9 = 720

My question why can't i say
first digit can be chosen by 9 ways
second digit can be chosen by 9 ways
third digit can be chosen by 8 ways
and we can arrange it in 3 ways, thus the answer is 9*9*8*3
User avatar
HuongShashi
Joined: 04 Mar 2014
Last visit: 31 Jul 2016
Posts: 8
Own Kudos:
5
 [1]
Given Kudos: 5
Concentration: Marketing, General Management
Posts: 8
Kudos: 5
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
Silver89
Thanks,
In fact you can solve it in another way too which is
number of ways without restriction = 9*9*9 = 729
number of ways that break restriction = 9*1*9 = 9
so the answer is 729-9 = 720

My question why can't i say
first digit can be chosen by 9 ways
second digit can be chosen by 9 ways
third digit can be chosen by 8 ways
and we can arrange it in 3 ways, thus the answer is 9*9*8*3

Ah, I got your question.

Yes, the easiest way would be as you pointed out:
A. Numbers without restriction = 9^3;
B. 3-digit integers with all alike digits = 9 (111, 222, ..., 999);

A-B=9^3-9=720.

Now, if we go your way it should be 9*8*7+9*8*3=720, where 9*8*7 is # of 3-digit integers with all distinct digits and 9*8*3 is # of 3-digit integers with two alike digits (XXY - 9*8 and multiplied by 3!/2! to get different permutations).

So, as there are two cases you cannot combine them in one formula and apply one factorial correction (3!/2!) to it.

Hope it's clear.


Sorry I don't understand both ways you mentioned. I dont know what is wrong with my way
9 ways for the first digit
9 ways for the second digit
8 ways for the last one
=> 9 x 9 x 8 = 648 ways. please explain! Many thanks
User avatar
akumar5
Joined: 21 Jan 2014
Last visit: 04 Jan 2016
Posts: 53
Own Kudos:
Given Kudos: 9
WE:General Management (Non-Profit and Government)
Posts: 53
Kudos: 76
Kudos
Add Kudos
Bookmarks
Bookmark this Post
HuongShashi
Bunuel
Silver89
Thanks,
In fact you can solve it in another way too which is
number of ways without restriction = 9*9*9 = 729
number of ways that break restriction = 9*1*9 = 9
so the answer is 729-9 = 720

My question why can't i say
first digit can be chosen by 9 ways
second digit can be chosen by 9 ways
third digit can be chosen by 8 ways
and we can arrange it in 3 ways, thus the answer is 9*9*8*3

Ah, I got your question.

Yes, the easiest way would be as you pointed out:
A. Numbers without restriction = 9^3;
B. 3-digit integers with all alike digits = 9 (111, 222, ..., 999);

A-B=9^3-9=720.

Now, if we go your way it should be 9*8*7+9*8*3=720, where 9*8*7 is # of 3-digit integers with all distinct digits and 9*8*3 is # of 3-digit integers with two alike digits (XXY - 9*8 and multiplied by 3!/2! to get different permutations).

So, as there are two cases you cannot combine them in one formula and apply one factorial correction (3!/2!) to it.

Hope it's clear.


Sorry I don't understand both ways you mentioned. I dont know what is wrong with my way
9 ways for the first digit
9 ways for the second digit
8 ways for the last one
=> 9 x 9 x 8 = 648 ways. please explain! Many thanks

As bunnel aptly said, it is quite simple to follow two steps :

1) 9*9*9 =729 ;this includes the no , which are repeated more than twice.
2) we have 9 no's excluding 0 ,whose all digits are same.

Hence , total no =729-9=720

Answer B
User avatar
TooLong150
Joined: 10 Mar 2013
Last visit: 07 Feb 2022
Posts: 135
Own Kudos:
536
 [1]
Given Kudos: 2,412
GMAT 1: 620 Q44 V31
GMAT 2: 610 Q47 V28
GMAT 3: 700 Q49 V36
GMAT 4: 690 Q48 V35
GMAT 5: 750 Q49 V42
GMAT 6: 730 Q50 V39
GPA: 3
Products:
GMAT 6: 730 Q50 V39
Posts: 135
Kudos: 536
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Direct with restriction:
Let m = number of three-digit integers with one digit appearing twice
m=9*1*8=72
However, there are C(3,2) ways that this condition can occur.
M=Total Appearing Twice=m*C(3,2)=72*3=216

Let z=number of three-digit integers with each digit appearing once.
z=9*8*7=504
There are C(3,3) ways that this condition can occur
Z=Total Appearing Once=z*C(3,3)=504*1=504

Total satisfying the problem condition=M+Z=216+504=720

B
avatar
OptimusPrepJanielle
Joined: 06 Nov 2014
Last visit: 08 Sep 2017
Posts: 1,779
Own Kudos:
Given Kudos: 23
Expert
Expert reply
Posts: 1,779
Kudos: 1,483
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Silver89
How many 3 digit integers can be chosen such that none of the digits appear more than twice and none of the digits equal zero ?

A. 729
B. 720
C. 648
D. 640
E. 576

what is the wrong of my method which is :
3*(9*9*8)
where first digit can be chosen by 9 ways
second digit can be chosen by 9 ways
third digit can be chosen by 8 ways
and since it's anagram of ( SSD ) it can be arranged in 3 ways so the answer IMO is 3*(9*9*8)= 1944 which is wrong

The simplest way to solve this is to find the numbers without any conditions applied and then from that subtract the numbers the satisfy the conditions.

Total 3-digit numbers without any digit being 0 = 9 * 9 * 9 = 729.
Out of these only 111, 222, 333, ... , 999 violate the given condition that a digit cannot be repeated more than twice.
Hence there are 9 such numbers.
Hence 729 - 9 = 720.

Hence option (B).

--
Optimus Prep's GMAT On Demand course for only $299 covers all verbal and quant. concepts in detail. Visit the following link to get your 7 days free trial account: https://www.optimus-prep.com/gmat-on-demand-course
avatar
vandermood
Joined: 08 Sep 2014
Last visit: 20 Aug 2015
Posts: 2
Own Kudos:
3
 [3]
Given Kudos: 1
Posts: 2
Kudos: 3
 [3]
2
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
Let's say this number is ABC.

Let's calculate how many numbers with two similar non zero digits and how many numbers with distinct non zero digits:

1. Two similar none zero digits: A has 9 possibilities, B has 1 possibility and C has 8 possibilities. So 9.1*8=72 different numbers. However, this configuration can be modeled in 3 ways, depending on the position of the similar numbers: XXY, XYX, YXX, therefore 72*3=216.

2. Distinct numbers: A has 9 possibilities, B has 8 possibilities and C has 7 possibilities, therfore: 9*8*7=504.

In total we have 504+216=720.
User avatar
gracie
Joined: 07 Dec 2014
Last visit: 11 Oct 2020
Posts: 1,030
Own Kudos:
Given Kudos: 27
Posts: 1,030
Kudos: 1,943
Kudos
Add Kudos
Bookmarks
Bookmark this Post
How many 3 digit integers can be chosen such that none of the digits appear more than twice and none of the digits equal zero?

9/9*9/10*9/10=729/900
729-9 triples=720
B. 720
User avatar
exc4libur
Joined: 24 Nov 2016
Last visit: 22 Mar 2022
Posts: 1,684
Own Kudos:
Given Kudos: 607
Location: United States
Posts: 1,684
Kudos: 1,447
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Silver89
How many 3 digit integers can be chosen such that none of the digits appear more than twice and none of the digits equal zero ?

A. 729
B. 720
C. 648
D. 640
E. 576

SOLUTION 1 (CASES)
\(digits={1,2,3,4,5,6,7,8,9}=9\)
\([000:all.different]…9•8•7=72•7=490+14=504\)
\([110:pair.different]…9•1•8•arrangements(3!/2!)=72•3=216\)
\(total=504+216=720\)

Answer (B)

SOLUTION 2 (TOTAL-NOTCASE)
\(digits={1,2,3,4,5,6,7,8,9}=9\)
\([XXX:any.digit]…9•9•9=729\)
\([333:triple]…9•1•1=9\)
\(total-not=729-9=720\)

Answer (B)
User avatar
Kinshook
User avatar
Major Poster
Joined: 03 Jun 2019
Last visit: 19 Nov 2025
Posts: 5,794
Own Kudos:
Given Kudos: 161
Location: India
GMAT 1: 690 Q50 V34
WE:Engineering (Transportation)
Products:
GMAT 1: 690 Q50 V34
Posts: 5,794
Kudos: 5,509
Kudos
Add Kudos
Bookmarks
Bookmark this Post
How many 3 digit integers can be chosen such that none of the digits appear more than twice and none of the digits equal zero ?

Digits = {1,2,3,....,9}

Total number of 3-digit integers formed using the digits without any condition = 9*9*9 = 729

The number of 3-digit integers formed using the digits with all 3 digits same = 9

The number of 3 digit integers can be chosen such that none of the digits appear more than twice and none of the digits equal zero = 729 - 9 = 720

IMO B
Moderators:
Math Expert
105388 posts
Tuck School Moderator
805 posts