It is currently 12 Dec 2017, 10:19

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

How many factors of 10800 are perfect squares?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

1 KUDOS received
CR Forum Moderator
User avatar
P
Status: The best is yet to come.....
Joined: 10 Mar 2013
Posts: 499

Kudos [?]: 218 [1], given: 197

GMAT ToolKit User CAT Tests
How many factors of 10800 are perfect squares? [#permalink]

Show Tags

New post 20 Oct 2017, 05:44
1
This post received
KUDOS
2
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  65% (hard)

Question Stats:

26% (00:59) correct 74% (01:26) wrong based on 50 sessions

HideShow timer Statistics

How many factors of 10800 are perfect squares?

A. 4
B. 6
C. 8
D. 10
E. 12
[Reveal] Spoiler: OA

_________________

Hasan Mahmud

Kudos [?]: 218 [1], given: 197

Expert Post
Math Expert
User avatar
D
Joined: 02 Aug 2009
Posts: 5341

Kudos [?]: 6107 [0], given: 121

How many factors of 10800 are perfect squares? [#permalink]

Show Tags

New post 20 Oct 2017, 05:53
Expert's post
1
This post was
BOOKMARKED
Mahmud6 wrote:
How many factors of 10800 are perfect squares?

A. 4
B. 6
C. 8
D. 10
E. 12




hi..

Factors of \(10800=1*2^5*3^3*5^2\)
all prime factors have atleast power of 2

so ways..
1) single digits..
1,2,3,4,5.... so 5 of them
2) product of two prime factors..
2*3
2*5
3*5
3*4
4*5
so 5 ways
3) product of 3 prime factors
2*3*5
3*4*5
so 2 ways

total = 5+5+2=12 ways
E
_________________

Absolute modulus :http://gmatclub.com/forum/absolute-modulus-a-better-understanding-210849.html#p1622372
Combination of similar and dissimilar things : http://gmatclub.com/forum/topic215915.html

Kudos [?]: 6107 [0], given: 121

Director
Director
avatar
P
Joined: 25 Feb 2013
Posts: 619

Kudos [?]: 304 [0], given: 39

Location: India
GPA: 3.82
GMAT ToolKit User Reviews Badge
How many factors of 10800 are perfect squares? [#permalink]

Show Tags

New post 20 Oct 2017, 06:16
2
This post was
BOOKMARKED
Mahmud6 wrote:
How many factors of 10800 are perfect squares?

A. 4
B. 6
C. 8
D. 10
E. 12


\(10800=1*2^4*3^3*5^2\)

For a factor to be a square it needs to have an even number of powers of each of the prime factors, in this case for \(2\), \(3\) & \(5\)

so for the sake of explanation, let \(10800=2^a*3^b*5^c\)

Now \(a\) can take values \(0\), \(2\) & \(4\) i.e \(3\) values

\(b\) can take values \(0\) & \(2\) i.e. \(2\) values

and \(c\) can take values \(0\) & \(2\) i.e. \(2\) values

Hence total number of perfect squares \(= 3*2*2=12\)

Again just to explain why we need to multiply here -
All the square factors occur when we take combinations of exponents from the three sets - {0,2,4}, {0,2} & {0,2}. hence the rule of multiplication is applied here for counting

Option E

Kudos [?]: 304 [0], given: 39

1 KUDOS received
Intern
Intern
avatar
B
Joined: 21 May 2017
Posts: 23

Kudos [?]: 7 [1], given: 4

Re: How many factors of 10800 are perfect squares? [#permalink]

Show Tags

New post 20 Oct 2017, 06:52
1
This post received
KUDOS
1
This post was
BOOKMARKED
E. 12

10800 = \(3^3 * 2^4 * 5^2\)

For a factor to be perfect square it needs to have even powers of 3, 2, 5.
Hence we count the number of even exponents of 3, 2, 5 and multiply them (combination activity)

The exponent count would be
0 and 2 for 3 - (total of 2)
0, 2, and 4 for 2 (total of 3)
0 and 2 for 5 (total of 2)

Total number of perfect square factor is 2 x 3 x 2 = 12
Why zero is included? because 1 (for example \(2^0 * 5^0\) = 1 x 1) is also a factor and it is a square.

Take an easy number 36 - How many factors of 36 are perfect squares?
36 = \(3^2 * 2^2\)
Even exponents - 0, 2 for 2 and 0, 2 for 3
Total exponent count is two each for 2 and 3
Hence perfect square factors are 2 x 2 = 4

Long method
Factors of 36 = 1, 2, 3, 4, 6, 8, 12, 36
Perfect sq factors are 1, 4, 9 and 36 - Hence 4 factors are perfect squares.

Kudos [?]: 7 [1], given: 4

Director
Director
avatar
P
Joined: 25 Feb 2013
Posts: 619

Kudos [?]: 304 [0], given: 39

Location: India
GPA: 3.82
GMAT ToolKit User Reviews Badge
Re: How many factors of 10800 are perfect squares? [#permalink]

Show Tags

New post 20 Oct 2017, 06:55
chetan2u wrote:
Mahmud6 wrote:
How many factors of 10800 are perfect squares?

A. 4
B. 6
C. 8
D. 10
E. 12




hi..

Factors of \(10800=1*2^5*3^3*5^2\)
all prime factors have atleast power of 2

so ways..
1) single digits..
1,2,3,4,5.... so 5 of them
2) product of two prime factors..
2*3
2*5
3*5
3*4
4*5
so 5 ways
3) product of 3 prime factors
2*3*5
3*4*5
so 2 ways

total = 5+5+2=12 ways
E


Hi chetan2u

You have got the right answer but I am not able to understand your approach. can you explain it in more detail.
Also I don't think we can use summation for number of ways here.

Kudos [?]: 304 [0], given: 39

DS Forum Moderator
avatar
S
Joined: 21 Aug 2013
Posts: 557

Kudos [?]: 183 [0], given: 284

Location: India
Re: How many factors of 10800 are perfect squares? [#permalink]

Show Tags

New post 20 Oct 2017, 10:18
Another way:

10800 = 2^4 * 5^2 * 3^3

Perfect squares are those where all powers are even (multiples of 2). First step thus is to take out something common and leave in parenthesis everything that is a perfect square.

So 10800 = 3 * (2^4 * 5^2 * 3^2). Now whatever is inside parenthesis is a perfect square. Lets see what is it the square of ?

We can re-write this as: 3 * (2^2 * 5 * 3)^2.
Note that the expression after 3 is whole square of (2^2 * 5 * 3). Now how many factors does 2^2 * 5 * 3 have? 3*2*2 = 12.

That's our answer. (basically whatever factor you take out of 2^2 * 5 * 3 will give you a new perfect square because its already raised to a power of 2)

This given number 10800 has 12 such factors which are perfect squares. Hence E answer

Kudos [?]: 183 [0], given: 284

Expert Post
Math Expert
User avatar
D
Joined: 02 Aug 2009
Posts: 5341

Kudos [?]: 6107 [0], given: 121

Re: How many factors of 10800 are perfect squares? [#permalink]

Show Tags

New post 20 Oct 2017, 20:07
niks18 wrote:
chetan2u wrote:
Mahmud6 wrote:
How many factors of 10800 are perfect squares?

A. 4
B. 6
C. 8
D. 10
E. 12




hi..

Factors of \(10800=1*2^5*3^3*5^2\)
all prime factors have atleast power of 2

so ways..
1) single digits..
1,2,3,4,5.... so 5 of them
2) product of two prime factors..
2*3
2*5
3*5
3*4
4*5
so 5 ways
3) product of 3 prime factors
2*3*5
3*4*5
so 2 ways

total = 5+5+2=12 ways
E


Hi chetan2u

You have got the right answer but I am not able to understand your approach. can you explain it in more detail.
Also I don't think we can use summation for number of ways here.


Hi...

the first step has been to factorize 10800, which is 2^5*3^3*5^2...
here all are atleast to POWER of 2 and 2^5 also includes 4^2

what is left is to find different combinations or choosing 1 or more out of prime factors - 1,2,3,2^2,5
single - 1,2,3,4,5 THAT is it contains \(1^2,2^2,3^2,4^2,5^2\)
two at a time - 2*3,2*5,3*5,3*4,4*5, THAT is it contains \((2*3)^2, (2*5)^2.......\)
three at a time - 2*3*5, 3*4*5 THAT is it contains \((2*3*5)^2\) and \((5*4*3)^2\)

total 12
_________________

Absolute modulus :http://gmatclub.com/forum/absolute-modulus-a-better-understanding-210849.html#p1622372
Combination of similar and dissimilar things : http://gmatclub.com/forum/topic215915.html

Kudos [?]: 6107 [0], given: 121

Re: How many factors of 10800 are perfect squares?   [#permalink] 20 Oct 2017, 20:07
Display posts from previous: Sort by

How many factors of 10800 are perfect squares?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.