It is currently 23 Feb 2018, 10:24

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

How to Identify Terminating Decimals on the GMAT

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Expert Post
6 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 43892
How to Identify Terminating Decimals on the GMAT [#permalink]

Show Tags

New post 05 Nov 2014, 06:53
6
This post received
KUDOS
Expert's post
12
This post was
BOOKMARKED
FROM Veritas Prep Blog: How to Identify Terminating Decimals on the GMAT
Image
We know the basics of decimals and rational numbers.

-   Decimals can be rational or irrational.

- Decimals which terminate and those which are non-terminating but repeating are rational. They can be written in the form a/b.

-  Decimals which are non-terminating and non-repeating are irrational such as √2, √3 etc.

The problem comes when we get a question based on these basics. That’s when we realize that our basics are not as strong as we assumed them to be. For example, look at this question:

Question: Which of the following fractions has a decimal equivalent that is a terminating decimal?

(A) 10/189

(B) 15/196

(C) 16/225

(D) 25/144

(E) 39/128

If your first thought is that we will simply divide the numerator by the denominator in each case and figure out which terminates and which doesn’t, you must realize that that is a very time consuming process. There has to be another logical approach to this problem. Well, here it is:

A fraction in its lowest term can be expressed as a terminating decimal if and only if the denominator has powers of only 2 and/or 5. Let’s try to understand the logic behind it.

Say, a and b are two integers.

a/b = a * 1/b

For a/b to be terminating, 1/b must be a terminating decimal. What happens when you start dividing 1 by b? You add a decimal point and start adding 0s. You will get 1 followed by as many 0s as you require in the numerator. 10/100/1000/10000 etc have only two prime divisors: 2 and 5. If the denominator has 2s or 5s or both, we will be able to terminate the decimal by choosing the required multiple of 10. If there are any other primes, we will never be able to divide a multiple of 10 completely and hence the decimal will not terminate. It is obvious, isn’t it?

1/3 = .333333333333333333…

1/7 = .142857142857142857…

1/11 = .09090909090909090…

Now the question we posed above is quite simple. Let’s look at it again.

Question 1: Which of the following fractions has a decimal equivalent that is a terminating decimal?

(A) 10/189

(B) 15/196

(C) 16/225

(D) 25/144

(E) 39/128

Only option (E) has a denominator of the form 2^a*5^b.

128 = 2^7

Therefore, 39/128 will terminate. All the other denominators have other prime numbers as well and hence will not terminate.

Using the same concepts, let’s look at another question.

Question 2: If 1/(2^11 * 5^17) is expressed as a terminating decimal, how many non-zero digits will the decimal have?

(A) 1

(B) 2

(C) 4

(D) 6

(E) 11

Solution:

First realize that 2^11 * 5^17 = 2^11 * 5^11 * 5^6 = 10^11 * 5^6

So 1/(10^11 * 5^6)  is just 0.00…001/5^6.

Now let’s try to figure out the answer intuitively:

What do you get when you divide .01 by 5? You get .002. You write 0s till you get 10 and then you get a non-zero digit.

What do you get when you divide .01 by 125 (which is 5^3)? You get .00008.

Do you notice something? The non zero term is 8 = 2^3

The reason is this: You have 1 followed by as many 0s as you require in the dividend. 125 = 5^3 so you will need 2^3 i.e. you will need 10^3 as the dividend and then 125 will be able to divide it completely (i.e. the decimal will terminate).

Now, using the same logic, what will be the non zero digits if you are dividing .00001 by 625?

625 = 5^4. You will need 2^4 = 16 to get 10^4 and that will end the terminating decimal. So you will have two non 0 digits: 16

What will you get when you divide .000…0001 by 5^6? Your non zero digits will be 2^6 = 64 i.e. you will have 2 non-zero digits.

Another way to look at the problem is this:

1/(10^11 * 5^6)  = 2^6/(10^17) (multiply and divide by 2^6)

= 64/(10^17)

Since the denominator is a power of 10, it will just move the decimal 17 places to the left. The non-zero digits will remain 64 only i.e. 2 digits.

Answer (B)

We will look at some DS questions on terminating and non terminating decimals next week.

Karishma, a Computer Engineer with a keen interest in alternative Mathematical approaches, has mentored students in the continents of Asia, Europe and North America. She teaches the GMAT for Veritas Prep and regularly participates in content development projects such as this blog!
ForumBlogs - GMAT Club’s latest feature blends timely Blog entries with forum discussions. Now GMAT Club Forums incorporate all relevant information from Student, Admissions blogs, Twitter, and other sources in one place. You no longer have to check and follow dozens of blogs, just subscribe to the relevant topics and forums on GMAT club or follow the posters and you will get email notifications when something new is posted. Add your blog to the list! and be featured to over 300,000 unique monthly visitors

_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Veritas Prep GMAT Discount CodesKaplan GMAT Prep Discount CodesMagoosh Discount Codes
Expert Post
2 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 43892
Re: How to Identify Terminating Decimals on the GMAT [#permalink]

Show Tags

New post 05 Nov 2014, 06:54
2
This post received
KUDOS
Expert's post
1
This post was
BOOKMARKED
Non-Human User
User avatar
Joined: 09 Sep 2013
Posts: 13785
Premium Member
Re: How to Identify Terminating Decimals on the GMAT [#permalink]

Show Tags

New post 25 Mar 2016, 06:57
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

Non-Human User
User avatar
Joined: 09 Sep 2013
Posts: 13785
Premium Member
Re: How to Identify Terminating Decimals on the GMAT [#permalink]

Show Tags

New post 10 Aug 2017, 02:14
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

Intern
Intern
avatar
B
Joined: 29 Apr 2017
Posts: 4
Re: How to Identify Terminating Decimals on the GMAT [#permalink]

Show Tags

New post 22 Aug 2017, 23:04
fantastic explanation and helps to solve problem under 30s
Re: How to Identify Terminating Decimals on the GMAT   [#permalink] 22 Aug 2017, 23:04
Display posts from previous: Sort by

How to Identify Terminating Decimals on the GMAT

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


cron

GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.